BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 30676878)

  • 1. Are peak ground reaction forces related to better sprint acceleration performance?
    Nagahara R; Kanehisa H; Matsuo A; Fukunaga T
    Sports Biomech; 2021 Apr; 20(3):360-369. PubMed ID: 30676878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association of Sprint Performance With Ground Reaction Forces During Acceleration and Maximal Speed Phases in a Single Sprint.
    Nagahara R; Mizutani M; Matsuo A; Kanehisa H; Fukunaga T
    J Appl Biomech; 2018 Apr; 34(2):104-110. PubMed ID: 28952906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ground reaction force across the transition during sprint acceleration.
    Nagahara R; Kanehisa H; Fukunaga T
    Scand J Med Sci Sports; 2020 Mar; 30(3):450-461. PubMed ID: 31705835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Normative spatiotemporal and ground reaction force data for female and male sprinting.
    Nagahara R
    J Sports Sci; 2023 Jun; 41(12):1240-1249. PubMed ID: 37805986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical Insights Into Differences Between the Mid-Acceleration and Maximum Velocity Phases of Sprinting.
    Yu J; Sun Y; Yang C; Wang D; Yin K; Herzog W; Liu Y
    J Strength Cond Res; 2016 Jul; 30(7):1906-16. PubMed ID: 27331914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alterations of spatiotemporal and ground reaction force variables during decelerated sprinting.
    Nagahara R; Girard O
    Scand J Med Sci Sports; 2021 Mar; 31(3):586-596. PubMed ID: 33217086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic and kinematic determinants of female sprint performance.
    Gleadhill S; Nagahara R
    J Sports Sci; 2021 Mar; 39(6):609-617. PubMed ID: 33143572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First-stance phase force contributions to acceleration sprint performance in semi-professional soccer players.
    Wdowski MM; Gittoes MJR
    Eur J Sport Sci; 2020 Apr; 20(3):366-374. PubMed ID: 31167614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationships between ground reaction force impulse and kinematics of sprint-running acceleration.
    Hunter JP; Marshall RN; McNair PJ
    J Appl Biomech; 2005 Feb; 21(1):31-43. PubMed ID: 16131703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute effects of caffeine supplementation on kinematics and kinetics of sprinting.
    Horiuchi M; Nagahara R
    Scand J Med Sci Sports; 2024 Mar; 34(3):e14595. PubMed ID: 38458991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How sprinters accelerate beyond the velocity plateau of soccer players: Waveform analysis of ground reaction forces.
    Colyer SL; Nagahara R; Takai Y; Salo AIT
    Scand J Med Sci Sports; 2018 Dec; 28(12):2527-2535. PubMed ID: 30230037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of biological maturity status on ground reaction force production during sprinting.
    Colyer SL; Nagahara R; Takai Y; Salo AIT
    Scand J Med Sci Sports; 2020 Aug; 30(8):1387-1397. PubMed ID: 32285541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The importance of duration and magnitude of force application to sprint performance during the initial acceleration, transition and maximal velocity phases.
    von Lieres Und Wilkau HC; Bezodis NE; Morin JB; Irwin G; Simpson S; Bezodis IN
    J Sports Sci; 2020 Oct; 38(20):2359-2366. PubMed ID: 32627681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of kinematics and kinetics between unassisted and assisted maximum speed sprinting.
    Gleadhill S; Jiménez-Reyes P; van den Tillaar R; Nagahara R
    J Sports Sci; 2023 Dec; 41(24):2169-2175. PubMed ID: 38389310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Step-to-step spatiotemporal variables and ground reaction forces of intra-individual fastest sprinting in a single session.
    Nagahara R; Mizutani M; Matsuo A; Kanehisa H; Fukunaga T
    J Sports Sci; 2018 Jun; 36(12):1392-1401. PubMed ID: 28988513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ground reaction forces during sprint hurdles.
    Nagahara R; Wakamiya M; Shinohara Y; Nagano A
    J Sports Sci; 2021 Dec; 39(23):2706-2715. PubMed ID: 34313537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic and kinematic synchronization between blind and guide sprinters.
    Nagahara R
    J Sports Sci; 2021 Jul; 39(14):1661-1668. PubMed ID: 33622181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acceleration capability in elite sprinters and ground impulse: Push more, brake less?
    Morin JB; Slawinski J; Dorel S; de Villareal ES; Couturier A; Samozino P; Brughelli M; Rabita G
    J Biomech; 2015 Sep; 48(12):3149-54. PubMed ID: 26209876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. External mechanical work done during the acceleration stage of maximal sprint running and its association with running performance.
    Matsuo A; Mizutani M; Nagahara R; Fukunaga T; Kanehisa H
    J Exp Biol; 2019 Mar; 222(Pt 5):. PubMed ID: 30718371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple method for computing sprint acceleration kinetics from running velocity data: Replication study with improved design.
    Morin JB; Samozino P; Murata M; Cross MR; Nagahara R
    J Biomech; 2019 Sep; 94():82-87. PubMed ID: 31376978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.