These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 30676879)

  • 1. Are the green synthesized nanoparticles safe for environment? A case study of aquatic plant Azolla filiculoides as an indicator exposed to magnetite nanoparticles fabricated using microwave hydrothermal treatment and plant extract.
    Jafarirad S; Hajat Ardehjani P; Movafeghi A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(6):506-517. PubMed ID: 30676879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Green Synthesis of Fe
    Yusefi M; Shameli K; Su Yee O; Teow SY; Hedayatnasab Z; Jahangirian H; Webster TJ; Kuča K
    Int J Nanomedicine; 2021; 16():2515-2532. PubMed ID: 33824589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TiO
    Spanò C; Bottega S; Sorce C; Bartoli G; Ruffini Castiglione M
    Environ Sci Pollut Res Int; 2019 Oct; 26(29):29872-29882. PubMed ID: 31410835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response of growth and antioxidant enzymes in Azolla plants (Azolla pinnata and Azolla filiculoides) exposed to UV-B.
    Masood A; Zeeshan M; Abraham G
    Acta Biol Hung; 2008 Jun; 59(2):247-58. PubMed ID: 18637563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of TiO
    Movafeghi A; Khataee A; Abedi M; Tarrahi R; Dadpour M; Vafaei F
    J Environ Sci (China); 2018 Feb; 64():130-138. PubMed ID: 29478632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential of the aquatic fern Azolla filiculoides in biodegradation of an azo dye: modeling of experimental results by artificial neural networks.
    Khataee AR; Movafeghi A; Vafaei F; Lisar SY; Zarei M
    Int J Phytoremediation; 2013; 15(8):729-42. PubMed ID: 23819271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Green synthesis of Fe
    Liu L; Li Y; Al-Huqail AA; Ali E; Alkhalifah T; Alturise F; Ali HE
    Chemosphere; 2023 Sep; 334():138638. PubMed ID: 37100254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neutralization of iron oxide magnetic nanoparticle aquatoxicity on
    Ucar A; Arslan ME; Cilingir Yeltekin A; Ozgeris FB; Caglar Yıldırım O; Parlak V; Alak G; Turkez H; Atamanalp M
    Drug Chem Toxicol; 2024 May; 47(3):274-286. PubMed ID: 36606327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental toxicity of Fe
    Zhu S; Xue MY; Luo F; Chen WC; Zhu B; Wang GX
    Environ Pollut; 2017 Nov; 230():683-691. PubMed ID: 28715773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green Synthesis Magnetite (Fe₃O₄) Nanoparticles From Rhus coriaria Extract: A Characteristic Comparison With a Conventional Chemical Method.
    Piro NS; Hamad SM; Mohammed AS; Barzinjy AA
    IEEE Trans Nanobioscience; 2023 Apr; 22(2):308-317. PubMed ID: 35771791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetite nanoparticles coated with citric acid are not phytotoxic and stimulate soybean and alfalfa growth.
    Iannone MF; Groppa MD; Zawoznik MS; Coral DF; Fernández van Raap MB; Benavides MP
    Ecotoxicol Environ Saf; 2021 Mar; 211():111942. PubMed ID: 33476850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phyco-linked vs chemogenic magnetite nanoparticles: Route selectivity in nano-synthesis, antibacterial and acute zooplanktonic responses.
    Mashjoor S; Yousefzadi M; Zolgharnein H; Kamrani E; Alishahi M
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():324-340. PubMed ID: 31147005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicity of microwave-assisted biosynthesized zinc nanoparticles in mice: a preliminary study.
    Salimi A; Rahimi HR; Forootanfar H; Jafari E; Ameri A; Shakibaie M
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):1846-1858. PubMed ID: 31066299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antifungal Potential of Green Synthesized Magnetite Nanoparticles Black Coffee-Magnetite Nanoparticles Against Wilt Infection by Ameliorating Enzymatic Activity and Gene Expression in
    Ashraf H; Batool T; Anjum T; Illyas A; Li G; Naseem S; Riaz S
    Front Microbiol; 2022; 13():754292. PubMed ID: 35308392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Green Microwave-Assisted Combustion Synthesis of Zinc Oxide Nanoparticles with Citrullus colocynthis (L.) Schrad: Characterization and Biomedical Applications.
    Azizi S; Mohamad R; Mahdavi Shahri M
    Molecules; 2017 Feb; 22(2):. PubMed ID: 28212344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of the naturally-occurring contaminant microcystins on the Azolla filiculoides-Anabaena azollae symbiosis.
    Pereira AL; Monteiro B; Azevedo J; Campos A; Osório H; Vasconcelos V
    Ecotoxicol Environ Saf; 2015 Aug; 118():11-20. PubMed ID: 25890050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Green synthesis and environmental application of iron-based nanomaterials and nanocomposite: A review.
    Mondal P; Anweshan A; Purkait MK
    Chemosphere; 2020 Nov; 259():127509. PubMed ID: 32645598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant extract synthesized PLA nanoparticles for controlled and sustained release of quercetin: a green approach.
    Kumari A; Kumar V; Yadav SK
    PLoS One; 2012; 7(7):e41230. PubMed ID: 22844443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Green synthesis of gold nanoparticles using a cheap Sphaeranthus indicus extract: Impact on plant cells and the aquatic crustacean Artemia nauplii.
    Balalakshmi C; Gopinath K; Govindarajan M; Lokesh R; Arumugam A; Alharbi NS; Kadaikunnan S; Khaled JM; Benelli G
    J Photochem Photobiol B; 2017 Aug; 173():598-605. PubMed ID: 28697477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Green synthesis of nanoparticles and its potential application.
    Hussain I; Singh NB; Singh A; Singh H; Singh SC
    Biotechnol Lett; 2016 Apr; 38(4):545-60. PubMed ID: 26721237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.