These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 30676995)

  • 1. Computational design of structured loops for new protein functions.
    Kundert K; Kortemme T
    Biol Chem; 2019 Feb; 400(3):275-288. PubMed ID: 30676995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo design of buttressed loops for sculpting protein functions.
    Jiang H; Jude KM; Wu K; Fallas J; Ueda G; Brunette TJ; Hicks DR; Pyles H; Yang A; Carter L; Lamb M; Li X; Levine PM; Stewart L; Garcia KC; Baker D
    Nat Chem Biol; 2024 Aug; 20(8):974-980. PubMed ID: 38816644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic-accuracy prediction of protein loop structures through an RNA-inspired Ansatz.
    Das R
    PLoS One; 2013; 8(10):e74830. PubMed ID: 24204571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate positioning of functional residues with robotics-inspired computational protein design.
    Krivacic C; Kundert K; Pan X; Pache RA; Liu L; ConchĂșir SO; Jeliazkov JR; Gray JJ; Thompson MC; Fraser JS; Kortemme T
    Proc Natl Acad Sci U S A; 2022 Mar; 119(11):e2115480119. PubMed ID: 35254891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of calcium-binding sites by combining loop-modeling with machine learning.
    Liu T; Altman RB
    BMC Struct Biol; 2009 Dec; 9():72. PubMed ID: 20003365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rosetta FunFolDes - A general framework for the computational design of functional proteins.
    Bonet J; Wehrle S; Schriever K; Yang C; Billet A; Sesterhenn F; Scheck A; Sverrisson F; Veselkova B; Vollers S; Lourman R; Villard M; Rosset S; Krey T; Correia BE
    PLoS Comput Biol; 2018 Nov; 14(11):e1006623. PubMed ID: 30452434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designing protein structures and complexes with the molecular modeling program Rosetta.
    Kuhlman B
    J Biol Chem; 2019 Dec; 294(50):19436-19443. PubMed ID: 31699898
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Jiang H; Jude KM; Wu K; Fallas J; Ueda G; Brunette TJ; Hicks D; Pyles H; Yang A; Carter L; Lamb M; Li X; Levine PM; Stewart L; Garcia KC; Baker D
    bioRxiv; 2023 Aug; ():. PubMed ID: 37662224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progress in super long loop prediction.
    Zhao S; Zhu K; Li J; Friesner RA
    Proteins; 2011 Oct; 79(10):2920-35. PubMed ID: 21905115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A modular perspective of protein structures: application to fragment based loop modeling.
    Fernandez-Fuentes N; Fiser A
    Methods Mol Biol; 2013; 932():141-58. PubMed ID: 22987351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in protein structure prediction and design.
    Kuhlman B; Bradley P
    Nat Rev Mol Cell Biol; 2019 Nov; 20(11):681-697. PubMed ID: 31417196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computational method for the design of nested proteins by loop-directed domain insertion.
    Blacklock KM; Yang L; Mulligan VK; Khare SD
    Proteins; 2018 Mar; 86(3):354-369. PubMed ID: 29250820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein loop modeling using a new hybrid energy function and its application to modeling in inaccurate structural environments.
    Park H; Lee GR; Heo L; Seok C
    PLoS One; 2014; 9(11):e113811. PubMed ID: 25419655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of protein biochemical functions by similarity search using the molecular surface database eF-site.
    Kinoshita K; Nakamura H
    Protein Sci; 2003 Aug; 12(8):1589-95. PubMed ID: 12876308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling Protein Side-Chain and Backbone Flexibility Improves the Re-design of Protein-Ligand Specificity.
    Ollikainen N; de Jong RM; Kortemme T
    PLoS Comput Biol; 2015; 11(9):e1004335. PubMed ID: 26397464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Rosetta flexible-backbone computational protein design methods on binding interactions.
    Loshbaugh AL; Kortemme T
    Proteins; 2020 Jan; 88(1):206-226. PubMed ID: 31344278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure prediction for CASP7 targets using extensive all-atom refinement with Rosetta@home.
    Das R; Qian B; Raman S; Vernon R; Thompson J; Bradley P; Khare S; Tyka MD; Bhat D; Chivian D; Kim DE; Sheffler WH; Malmström L; Wollacott AM; Wang C; Andre I; Baker D
    Proteins; 2007; 69 Suppl 8():118-28. PubMed ID: 17894356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational analysis and clustering of short and medium size loops connecting regular secondary structures: a database for modeling and prediction.
    Donate LE; Rufino SD; Canard LH; Blundell TL
    Protein Sci; 1996 Dec; 5(12):2600-16. PubMed ID: 8976569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The FEATURE framework for protein function annotation: modeling new functions, improving performance, and extending to novel applications.
    Halperin I; Glazer DS; Wu S; Altman RB
    BMC Genomics; 2008 Sep; 9 Suppl 2(Suppl 2):S2. PubMed ID: 18831785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.