These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

660 related articles for article (PubMed ID: 30677016)

  • 1. Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study.
    Kather JN; Krisam J; Charoentong P; Luedde T; Herpel E; Weis CA; Gaiser T; Marx A; Valous NA; Ferber D; Jansen L; Reyes-Aldasoro CC; Zörnig I; Jäger D; Brenner H; Chang-Claude J; Hoffmeister M; Halama N
    PLoS Med; 2019 Jan; 16(1):e1002730. PubMed ID: 30677016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning for prediction of colorectal cancer outcome: a discovery and validation study.
    Skrede OJ; De Raedt S; Kleppe A; Hveem TS; Liestøl K; Maddison J; Askautrud HA; Pradhan M; Nesheim JA; Albregtsen F; Farstad IN; Domingo E; Church DN; Nesbakken A; Shepherd NA; Tomlinson I; Kerr R; Novelli M; Kerr DJ; Danielsen HE
    Lancet; 2020 Feb; 395(10221):350-360. PubMed ID: 32007170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial intelligence quantified tumour-stroma ratio is an independent predictor for overall survival in resectable colorectal cancer.
    Zhao K; Li Z; Yao S; Wang Y; Wu X; Xu Z; Wu L; Huang Y; Liang C; Liu Z
    EBioMedicine; 2020 Nov; 61():103054. PubMed ID: 33039706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning can predict lymph node status directly from histology in colorectal cancer.
    Kiehl L; Kuntz S; Höhn J; Jutzi T; Krieghoff-Henning E; Kather JN; Holland-Letz T; Kopp-Schneider A; Chang-Claude J; Brobeil A; von Kalle C; Fröhling S; Alwers E; Brenner H; Hoffmeister M; Brinker TJ
    Eur J Cancer; 2021 Nov; 157():464-473. PubMed ID: 34649117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved accuracy in colorectal cancer tissue decomposition through refinement of established deep learning solutions.
    Prezja F; Äyrämö S; Pölönen I; Ojala T; Lahtinen S; Ruusuvuori P; Kuopio T
    Sci Rep; 2023 Sep; 13(1):15879. PubMed ID: 37741820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning based tissue analysis predicts outcome in colorectal cancer.
    Bychkov D; Linder N; Turkki R; Nordling S; Kovanen PE; Verrill C; Walliander M; Lundin M; Haglund C; Lundin J
    Sci Rep; 2018 Feb; 8(1):3395. PubMed ID: 29467373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and validation of a weakly supervised deep learning framework to predict the status of molecular pathways and key mutations in colorectal cancer from routine histology images: a retrospective study.
    Bilal M; Raza SEA; Azam A; Graham S; Ilyas M; Cree IA; Snead D; Minhas F; Rajpoot NM
    Lancet Digit Health; 2021 Dec; 3(12):e763-e772. PubMed ID: 34686474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning model for the prediction of microsatellite instability in colorectal cancer: a diagnostic study.
    Yamashita R; Long J; Longacre T; Peng L; Berry G; Martin B; Higgins J; Rubin DL; Shen J
    Lancet Oncol; 2021 Jan; 22(1):132-141. PubMed ID: 33387492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From slides to insights: Harnessing deep learning for prognostic survival prediction in human colorectal cancer histology.
    Verma J; Sandhu A; Popli R; Kumar R; Khullar V; Kansal I; Sharma A; Garg K; Kashyap N; Aurangzeb K
    Open Life Sci; 2023; 18(1):20220777. PubMed ID: 38152577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial intelligence-assisted analysis for tumor-immune interaction within the invasive margin of colorectal cancer.
    Ye Y; Wu X; Wang H; Ye H; Zhao K; Yao S; Liu Z; Zhu Y; Zhang Q; Liang C
    Ann Med; 2023 Dec; 55(1):2215541. PubMed ID: 37224471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated quantitative analysis of Ki-67 staining and HE images recognition and registration based on whole tissue sections in breast carcinoma.
    Feng M; Deng Y; Yang L; Jing Q; Zhang Z; Xu L; Wei X; Zhou Y; Wu D; Xiang F; Wang Y; Bao J; Bu H
    Diagn Pathol; 2020 May; 15(1):65. PubMed ID: 32471471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated curation of large-scale cancer histopathology image datasets using deep learning.
    Hilgers L; Ghaffari Laleh N; West NP; Westwood A; Hewitt KJ; Quirke P; Grabsch HI; Carrero ZI; Matthaei E; Loeffler CML; Brinker TJ; Yuan T; Brenner H; Brobeil A; Hoffmeister M; Kather JN
    Histopathology; 2024 Jun; 84(7):1139-1153. PubMed ID: 38409878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction and validation of a deep learning prognostic model based on digital pathology images of stage III colorectal cancer.
    Zhou X; Lu Y; Wu Y; Yu Y; Liu Y; Wang C; Zhao Z; Wang C; Gao Z; Li Z; Zhao Y; Cao W
    Eur J Surg Oncol; 2024 Jul; 50(7):108369. PubMed ID: 38703632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning can predict survival directly from histology in clear cell renal cell carcinoma.
    Wessels F; Schmitt M; Krieghoff-Henning E; Kather JN; Nientiedt M; Kriegmair MC; Worst TS; Neuberger M; Steeg M; Popovic ZV; Gaiser T; von Kalle C; Utikal JS; Fröhling S; Michel MS; Nuhn P; Brinker TJ
    PLoS One; 2022; 17(8):e0272656. PubMed ID: 35976907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peritumoral tertiary lymphoid structure and tumor stroma percentage predict the prognosis of patients with non-metastatic colorectal cancer.
    Wang Q; Shen X; An R; Bai J; Dong J; Cai H; Zhu H; Zhong W; Chen W; Liu A; Du J
    Front Immunol; 2022; 13():962056. PubMed ID: 36189233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computed tomography-based multitask deep learning model for predicting tumour stroma ratio and treatment outcomes in patients with colorectal cancer: a multicentre cohort study.
    Cui Y; Zhao K; Meng X; Mao Y; Han C; Shi Z; Yang X; Tong T; Wu L; Liu Z
    Int J Surg; 2024 May; 110(5):2845-2854. PubMed ID: 38348900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fully Automated Tumor Bud Assessment in Hematoxylin and Eosin-Stained Whole Slide Images of Colorectal Cancer.
    Bokhorst JM; Ciompi F; Öztürk SK; Oguz Erdogan AS; Vieth M; Dawson H; Kirsch R; Simmer F; Sheahan K; Lugli A; Zlobec I; van der Laak J; Nagtegaal ID
    Mod Pathol; 2023 Sep; 36(9):100233. PubMed ID: 37257824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiographical assessment of tumour stroma and treatment outcomes using deep learning: a retrospective, multicohort study.
    Jiang Y; Liang X; Han Z; Wang W; Xi S; Li T; Chen C; Yuan Q; Li N; Yu J; Xie Y; Xu Y; Zhou Z; Poultsides GA; Li G; Li R
    Lancet Digit Health; 2021 Jun; 3(6):e371-e382. PubMed ID: 34045003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utility of artificial intelligence with deep learning of hematoxylin and eosin-stained whole slide images to predict lymph node metastasis in T1 colorectal cancer using endoscopically resected specimens; prediction of lymph node metastasis in T1 colorectal cancer.
    Song JH; Hong Y; Kim ER; Kim SH; Sohn I
    J Gastroenterol; 2022 Sep; 57(9):654-666. PubMed ID: 35802259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Weakly supervised annotation-free cancer detection and prediction of genotype in routine histopathology.
    Schrammen PL; Ghaffari Laleh N; Echle A; Truhn D; Schulz V; Brinker TJ; Brenner H; Chang-Claude J; Alwers E; Brobeil A; Kloor M; Heij LR; Jäger D; Trautwein C; Grabsch HI; Quirke P; West NP; Hoffmeister M; Kather JN
    J Pathol; 2022 Jan; 256(1):50-60. PubMed ID: 34561876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.