BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

652 related articles for article (PubMed ID: 30677016)

  • 21. A new method for evaluating tumor-infiltrating lymphocytes (TILs) in colorectal cancer using hematoxylin and eosin (H-E)-stained tumor sections.
    Iseki Y; Shibutani M; Maeda K; Nagahara H; Fukuoka T; Matsutani S; Kashiwagi S; Tanaka H; Hirakawa K; Ohira M
    PLoS One; 2018; 13(4):e0192744. PubMed ID: 29698402
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polymorphisms in the Angiogenesis-Related Genes
    Scherer D; Deutelmoser H; Balavarca Y; Toth R; Habermann N; Buck K; Kap EJ; Botma A; Seibold P; Jansen L; Lorenzo Bermejo J; Weigl K; Benner A; Hoffmeister M; Ulrich A; Brenner H; Burwinkel B; Chang-Claude J; Ulrich CM
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32751332
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prognostic Significance of Immune Cell Populations Identified by Machine Learning in Colorectal Cancer Using Routine Hematoxylin and Eosin-Stained Sections.
    Väyrynen JP; Lau MC; Haruki K; Väyrynen SA; Dias Costa A; Borowsky J; Zhao M; Fujiyoshi K; Arima K; Twombly TS; Kishikawa J; Gu S; Aminmozaffari S; Shi S; Baba Y; Akimoto N; Ugai T; Da Silva A; Song M; Wu K; Chan AT; Nishihara R; Fuchs CS; Meyerhardt JA; Giannakis M; Ogino S; Nowak JA
    Clin Cancer Res; 2020 Aug; 26(16):4326-4338. PubMed ID: 32439699
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cancer-associated fibroblasts impact the clinical outcome and treatment response in colorectal cancer via immune system modulation: a comprehensive genome-wide analysis.
    Chen YF; Yu ZL; Lv MY; Cai ZR; Zou YF; Lan P; Wu XJ; Gao F
    Mol Med; 2021 Oct; 27(1):139. PubMed ID: 34717544
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Associations of red and processed meat with survival after colorectal cancer and differences according to timing of dietary assessment.
    Carr PR; Jansen L; Walter V; Kloor M; Roth W; Bläker H; Chang-Claude J; Brenner H; Hoffmeister M
    Am J Clin Nutr; 2016 Jan; 103(1):192-200. PubMed ID: 26607936
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development and interpretation of a pathomics-based model for the prediction of microsatellite instability in Colorectal Cancer.
    Cao R; Yang F; Ma SC; Liu L; Zhao Y; Li Y; Wu DH; Wang T; Lu WJ; Cai WJ; Zhu HB; Guo XJ; Lu YW; Kuang JJ; Huan WJ; Tang WM; Huang K; Huang J; Yao J; Dong ZY
    Theranostics; 2020; 10(24):11080-11091. PubMed ID: 33042271
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of Deep Learning to Develop and Analyze Computational Hematoxylin and Eosin Staining of Prostate Core Biopsy Images for Tumor Diagnosis.
    Rana A; Lowe A; Lithgow M; Horback K; Janovitz T; Da Silva A; Tsai H; Shanmugam V; Bayat A; Shah P
    JAMA Netw Open; 2020 May; 3(5):e205111. PubMed ID: 32432709
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep learning-based subtyping of gastric cancer histology predicts clinical outcome: a multi-institutional retrospective study.
    Veldhuizen GP; Röcken C; Behrens HM; Cifci D; Muti HS; Yoshikawa T; Arai T; Oshima T; Tan P; Ebert MP; Pearson AT; Calderaro J; Grabsch HI; Kather JN
    Gastric Cancer; 2023 Sep; 26(5):708-720. PubMed ID: 37269416
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MuDeRN: Multi-category classification of breast histopathological image using deep residual networks.
    Gandomkar Z; Brennan PC; Mello-Thoms C
    Artif Intell Med; 2018 Jun; 88():14-24. PubMed ID: 29705552
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interpretable deep learning model to predict the molecular classification of endometrial cancer from haematoxylin and eosin-stained whole-slide images: a combined analysis of the PORTEC randomised trials and clinical cohorts.
    Fremond S; Andani S; Barkey Wolf J; Dijkstra J; Melsbach S; Jobsen JJ; Brinkhuis M; Roothaan S; Jurgenliemk-Schulz I; Lutgens LCHW; Nout RA; van der Steen-Banasik EM; de Boer SM; Powell ME; Singh N; Mileshkin LR; Mackay HJ; Leary A; Nijman HW; Smit VTHBM; Creutzberg CL; Horeweg N; Koelzer VH; Bosse T
    Lancet Digit Health; 2023 Feb; 5(2):e71-e82. PubMed ID: 36496303
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tumor-Stroma Proportion to Predict Chemoresistance in Patients With Ovarian Cancer.
    Lou E; Clemente V; Grube M; Svedbom A; Nelson AC; Blome F; Staebler A; Kommoss S; Bazzaro M
    JAMA Netw Open; 2024 Feb; 7(2):e240407. PubMed ID: 38411963
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Histopathological characteristics and artificial intelligence for predicting tumor mutational burden-high colorectal cancer.
    Shimada Y; Okuda S; Watanabe Y; Tajima Y; Nagahashi M; Ichikawa H; Nakano M; Sakata J; Takii Y; Kawasaki T; Homma KI; Kamori T; Oki E; Ling Y; Takeuchi S; Wakai T
    J Gastroenterol; 2021 Jun; 56(6):547-559. PubMed ID: 33909150
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Statin use and survival after colorectal cancer: the importance of comprehensive confounder adjustment.
    Hoffmeister M; Jansen L; Rudolph A; Toth C; Kloor M; Roth W; Bläker H; Chang-Claude J; Brenner H
    J Natl Cancer Inst; 2015 Jun; 107(6):djv045. PubMed ID: 25770147
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of prognostic immune-related gene signature associated with tumor microenvironment of colorectal cancer.
    Wang Y; Li W; Jin X; Jiang X; Guo S; Xu F; Su X; Wang G; Zhao Z; Gu X
    BMC Cancer; 2021 Aug; 21(1):905. PubMed ID: 34364366
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High stromal nicotinamide N-methyltransferase (NNMT) indicates poor prognosis in colorectal cancer.
    Song M; Li Y; Miao M; Zhang F; Yuan H; Cao F; Chang W; Shi H; Song C
    Cancer Med; 2020 Mar; 9(6):2030-2038. PubMed ID: 31989785
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Artificial intelligence for quantifying immune infiltrates interacting with stroma in colorectal cancer.
    Yang J; Ye H; Fan X; Li Y; Wu X; Zhao M; Hu Q; Ye Y; Wu L; Li Z; Zhang X; Liang C; Wang Y; Xu Y; Li Q; Yao S; You D; Zhao K; Liu Z
    J Transl Med; 2022 Oct; 20(1):451. PubMed ID: 36195956
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatial analysis of tumor-infiltrating lymphocytes in histological sections using deep learning techniques predicts survival in colorectal carcinoma.
    Xu H; Cha YJ; Clemenceau JR; Choi J; Lee SH; Kang J; Hwang TH
    J Pathol Clin Res; 2022 Jul; 8(4):327-339. PubMed ID: 35484698
    [TBL] [Abstract][Full Text] [Related]  

  • 38. End-to-end prognostication in colorectal cancer by deep learning: a retrospective, multicentre study.
    Jiang X; Hoffmeister M; Brenner H; Muti HS; Yuan T; Foersch S; West NP; Brobeil A; Jonnagaddala J; Hawkins N; Ward RL; Brinker TJ; Saldanha OL; Ke J; Müller W; Grabsch HI; Quirke P; Truhn D; Kather JN
    Lancet Digit Health; 2024 Jan; 6(1):e33-e43. PubMed ID: 38123254
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biased data, biased AI: deep networks predict the acquisition site of TCGA images.
    Dehkharghanian T; Bidgoli AA; Riasatian A; Mazaheri P; Campbell CJV; Pantanowitz L; Tizhoosh HR; Rahnamayan S
    Diagn Pathol; 2023 May; 18(1):67. PubMed ID: 37198691
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting Lymph Node Metastasis From Primary Cervical Squamous Cell Carcinoma Based on Deep Learning in Histopathologic Images.
    Guo Q; Qu L; Zhu J; Li H; Wu Y; Wang S; Yu M; Wu J; Wen H; Ju X; Wang X; Bi R; Shi Y; Wu X
    Mod Pathol; 2023 Dec; 36(12):100316. PubMed ID: 37634868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.