These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 306771)

  • 1. [Influence of adaption level upon oscillatory potential in the electroretinogram (author's transl)].
    Denden A
    Albrecht Von Graefes Arch Klin Exp Ophthalmol; 1978 Mar; 205(4):279-88. PubMed ID: 306771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Off-components in response to brief light flashes in the oscillatory potential of the human electroretinogram.
    Kojima M; Zrenner E
    Albrecht Von Graefes Arch Klin Exp Ophthalmol; 1978 May; 206(2):107-20. PubMed ID: 306772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in oscillatory potentials in the canine electroretinogram during dark adaptation.
    Sims MH; Brooks DE
    Am J Vet Res; 1990 Oct; 51(10):1580-6. PubMed ID: 2240780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oscillatory potentials with repeated-flash electroretinography.
    Kuniyoshi K; Irifune M; Uno N; Nakao A; Shimomura Y
    Jpn J Ophthalmol; 2010 Jan; 54(1):32-5. PubMed ID: 20151273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The electroretinogram recorded at the onset of dark-adaptation: understanding the origin of the scotopic oscillatory potentials.
    Rousseau S; Lachapelle P
    Doc Ophthalmol; 1999; 99(2):135-50. PubMed ID: 11097118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the oscillatory potentials of the human electroretinogram in light and dark adaptation. I. Thresholds and relation to stimulus intensity on adaptation to short flashes of light. A Fourier analysis.
    Algvere P; Wachtmeister L; Westbeck S
    Acta Ophthalmol (Copenh); 1972; 50(5):735-59. PubMed ID: 4678547
    [No Abstract]   [Full Text] [Related]  

  • 7. On the oscillatory potentials of the human electroretinogram in light and dark adaptation.
    Wachtmeister L
    Acta Ophthalmol Suppl; 1972; 116():1-32. PubMed ID: 4348676
    [No Abstract]   [Full Text] [Related]  

  • 8. [Oscillatory potentials in human electroretinography during adaptation to light and dark].
    Peregrin J; Svĕrák J; Kremlácek J
    Cesk Slov Oftalmol; 1998 Jan; 54(1):3-9. PubMed ID: 9501637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light adaptation of the human photopic oscillatory potentials: influence of the length of the dark adaptation period.
    Benoit J; Lachapelle P
    Doc Ophthalmol; 1995; 89(3):267-76. PubMed ID: 7555594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Studies on the nature of the oscillatory potential of the human electroretinogram. I. Scotopic oscillatory potentials (on response) (author's transl)].
    Kojima M
    Nippon Ganka Gakkai Zasshi; 1978 Sep; 82(9):652-6. PubMed ID: 717193
    [No Abstract]   [Full Text] [Related]  

  • 11. On the oscillatory potentials of the human electroretinogram in light and dark adaptation. II. Effect of adaptation to background light and subsequent recovery in the dark. A Fourier analysis.
    Algvere P; Wachtmeister L
    Acta Ophthalmol (Copenh); 1972; 50(6):837-62. PubMed ID: 4678873
    [No Abstract]   [Full Text] [Related]  

  • 12. Relationships between the electroretinogram a-wave, b-wave and oscillatory potentials and their application to clinical diagnosis.
    Asi H; Perlman I
    Doc Ophthalmol; 1992; 79(2):125-39. PubMed ID: 1591967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the oscillatory potentials of the human electroretinogram in light and dark adaptation. IV. Effect of adaptation to short flashes of light. Time interval and intensity of conditioning flashes. A Fourier analysis.
    Wachtmeister L
    Acta Ophthalmol (Copenh); 1973; 51(2):250-69. PubMed ID: 4801583
    [No Abstract]   [Full Text] [Related]  

  • 14. Neuronal adaptation in the human retina: a study of the single oscillatory response in dark adaptation and mesopic background illumination.
    Lundström AL; Wang L; Wachtmeister L
    Acta Ophthalmol Scand; 2007 Nov; 85(7):756-63. PubMed ID: 17488317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The postnatal development of the oscillatory potentials of the electroretinogram. I. Basic characteristics.
    el-Azazi M; Wachtmeister L
    Acta Ophthalmol (Copenh); 1990 Aug; 68(4):401-9. PubMed ID: 2220355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oscillatory potentials as predictors to amplitude and peak time of the photopic b-wave of the human electroretinogram.
    Lachapelle P
    Doc Ophthalmol; 1990 Aug; 75(1):73-82. PubMed ID: 2265580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Investigations of response after short delay double-flash electroretinography in the dark adapted frog eye (author's transl)].
    Schulze J; Brödner H
    Klin Monbl Augenheilkd; 1973 Oct; 163(4):476-81. PubMed ID: 4776069
    [No Abstract]   [Full Text] [Related]  

  • 18. Incremental thresholds of the oscillatory potentials of the human electroretinogram in response to coloured light.
    Wachtmeister L
    Acta Ophthalmol (Copenh); 1974; 52(3):378-89. PubMed ID: 4408232
    [No Abstract]   [Full Text] [Related]  

  • 19. Electroretinogram in unilateral vascular stress in nondiabetic and diabetic subjects.
    Kergoat H
    Optom Vis Sci; 1993 Sep; 70(9):743-9. PubMed ID: 8233370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electroretinographic oscillatory potentials in diabetic retinopathy. An analysis in the domains of time and frequency.
    Li X; Sun X; Hu Y; Huang J; Zhang H
    Doc Ophthalmol; 1992; 81(2):173-9. PubMed ID: 1468347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.