BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 30677145)

  • 21. BetaBuddy: An end-to-end computer vision pipeline for the automated analysis of insulin secreting β-cells.
    Alsup AM; Fowlds K; Cho M; Luber JM
    bioRxiv; 2023 Apr; ():. PubMed ID: 37066375
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extended-volume image-derived models of coronary microcirculation.
    Vigneshwaran V; Sy CL; Smaill BH; Sands GB; Smith NP
    Microcirculation; 2023 Aug; 30(5-6):e12820. PubMed ID: 37392132
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Laryngeal surface reconstructions from monocular endoscopic videos: a structure from motion pipeline for periodic deformations.
    Regef J; Talasila L; Wiercigroch J; Lin RJ; Kahrs LA
    Int J Comput Assist Radiol Surg; 2024 Apr; ():. PubMed ID: 38652415
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RESPAN: an accurate, unbiased and automated pipeline for analysis of dendritic morphology and dendritic spine mapping.
    Garcia SB; Schlotter AP; Pereira D; Polleux F; Hammond LA
    bioRxiv; 2024 Jun; ():. PubMed ID: 38895232
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ANDA: An open-source tool for automated image analysis of neuronal differentiation.
    Wæhler HA; Labba NA; Paulsen RE; Sandve GK; Eskeland R
    bioRxiv; 2023 Apr; ():. PubMed ID: 37162841
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TSMPN-PSI: high-performance polarization scattering imaging based on three-stage multi-pipeline networks.
    Fan X; Lin B; Guo K; Liu B; Guo Z
    Opt Express; 2023 Nov; 31(23):38097-38113. PubMed ID: 38017925
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Common data models to streamline metabolomics processing and annotation, and implementation in a Python pipeline.
    Mitchell JM; Chi Y; Thapa M; Pang Z; Xia J; Li S
    bioRxiv; 2024 Feb; ():. PubMed ID: 38405981
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adorym: a multi-platform generic X-ray image reconstruction framework based on automatic differentiation.
    Du M; Kandel S; Deng J; Huang X; Demortiere A; Nguyen TT; Tucoulou R; De Andrade V; Jin Q; Jacobsen C
    Opt Express; 2021 Mar; 29(7):10000-10035. PubMed ID: 33820138
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Open-Source Framework for Automated High-Throughput Cell Biology Experiments.
    Katunin P; Zhou J; Shehata OM; Peden AA; Cadby A; Nikolaev A
    Front Cell Dev Biol; 2021; 9():697584. PubMed ID: 34631697
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Touch-Point Detection Using Thermal Video With Applications to Prevent Indirect Virus Spread.
    Ma G; Ross W; Tucker M; Hsu PC; Buckland DM; Codd PJ
    IEEE J Transl Eng Health Med; 2021; 9():4900711. PubMed ID: 34094721
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative Framework for Bench-to-Bedside Cancer Research.
    Zaman A; Bivona TG
    Cancers (Basel); 2022 Oct; 14(21):. PubMed ID: 36358671
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Longitudinal Assessment of COVID-19 Using a Deep Learning-based Quantitative CT Pipeline: Illustration of Two Cases.
    Cao Y; Xu Z; Feng J; Jin C; Han X; Wu H; Shi H
    Radiol Cardiothorac Imaging; 2020 Apr; 2(2):e200082. PubMed ID: 33778563
    [No Abstract]   [Full Text] [Related]  

  • 33. Erratum to: Introducing EzAAI: A Pipeline for High Throughput Calculations of Prokaryotic Average Amino Acid Identity.
    Kim D; Park S; Chun J
    J Microbiol; 2023 Sep; 61(9):879. PubMed ID: 37707763
    [No Abstract]   [Full Text] [Related]  

  • 34. Reproducibility of lung nodule radiomic features: Multivariable and univariable investigations that account for interactions between CT acquisition and reconstruction parameters.
    Emaminejad N; Wahi-Anwar MW; Kim GHJ; Hsu W; Brown M; McNitt-Gray M
    Med Phys; 2021 Jun; 48(6):2906-2919. PubMed ID: 33706419
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Technical Note: Design and implementation of a high-throughput pipeline for reconstruction and quantitative analysis of CT image data.
    Hoffman J; Emaminejad N; Wahi-Anwar M; Kim GH; Brown M; Young S; McNitt-Gray M
    Med Phys; 2019 May; 46(5):2310-2322. PubMed ID: 30677145
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Technical Note: FreeCT_wFBP: A robust, efficient, open-source implementation of weighted filtered backprojection for helical, fan-beam CT.
    Hoffman J; Young S; Noo F; McNitt-Gray M
    Med Phys; 2016 Mar; 43(3):1411-20. PubMed ID: 26936725
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness.
    Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ
    Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction.
    Fahimian BP; Zhao Y; Huang Z; Fung R; Mao Y; Zhu C; Khatonabadi M; DeMarco JJ; Osher SJ; McNitt-Gray MF; Miao J
    Med Phys; 2013 Mar; 40(3):031914. PubMed ID: 23464329
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CT artifact correction for sparse and truncated projection data using generative adversarial networks.
    Podgorsak AR; Shiraz Bhurwani MM; Ionita CN
    Med Phys; 2021 Feb; 48(2):615-626. PubMed ID: 32996149
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A review of GPU-based medical image reconstruction.
    Després P; Jia X
    Phys Med; 2017 Oct; 42():76-92. PubMed ID: 29173924
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.