These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 306772)

  • 1. Off-components in response to brief light flashes in the oscillatory potential of the human electroretinogram.
    Kojima M; Zrenner E
    Albrecht Von Graefes Arch Klin Exp Ophthalmol; 1978 May; 206(2):107-20. PubMed ID: 306772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Influence of adaption level upon oscillatory potential in the electroretinogram (author's transl)].
    Denden A
    Albrecht Von Graefes Arch Klin Exp Ophthalmol; 1978 Mar; 205(4):279-88. PubMed ID: 306771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of light adaptation on the response characteristics of human oscillatory potentials.
    Peachey NS; Alexander KR; Derlacki DJ; Bobak P; Fishman GA
    Electroencephalogr Clin Neurophysiol; 1991 Jan; 78(1):27-34. PubMed ID: 1701712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electroretinogram in unilateral vascular stress in nondiabetic and diabetic subjects.
    Kergoat H
    Optom Vis Sci; 1993 Sep; 70(9):743-9. PubMed ID: 8233370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the oscillatory potentials of the human electroretinogram in light and dark adaptation. I. Thresholds and relation to stimulus intensity on adaptation to short flashes of light. A Fourier analysis.
    Algvere P; Wachtmeister L; Westbeck S
    Acta Ophthalmol (Copenh); 1972; 50(5):735-59. PubMed ID: 4678547
    [No Abstract]   [Full Text] [Related]  

  • 6. [Variability of the parameters of oscillatory potentials of the human electroretinogram].
    Fan XQ; Xi WQ; Li HS; Wang RZ; Zhang YY
    Sheng Li Xue Bao; 1996 Oct; 48(5):497-500. PubMed ID: 9387784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Oscillatory potentials in human electroretinography during adaptation to light and dark].
    Peregrin J; Svĕrák J; Kremlácek J
    Cesk Slov Oftalmol; 1998 Jan; 54(1):3-9. PubMed ID: 9501637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in rod and cone-driven oscillatory potentials in the aging human retina.
    Dimopoulos IS; Freund PR; Redel T; Dornstauder B; Gilmour G; Sauvé Y
    Invest Ophthalmol Vis Sci; 2014 Jul; 55(8):5058-73. PubMed ID: 25034601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of adaptation and wavelength on the power spectrum of human oscillatory potentials.
    Vallabhan G; Kristiansen S; Price J; Young RS
    Doc Ophthalmol; 1988 Jun; 69(2):145-51. PubMed ID: 3168717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuronal adaptation in the human retina: a study of the single oscillatory response in dark adaptation and mesopic background illumination.
    Lundström AL; Wang L; Wachtmeister L
    Acta Ophthalmol Scand; 2007 Nov; 85(7):756-63. PubMed ID: 17488317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationships between the electroretinogram a-wave, b-wave and oscillatory potentials and their application to clinical diagnosis.
    Asi H; Perlman I
    Doc Ophthalmol; 1992; 79(2):125-39. PubMed ID: 1591967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oscillatory potentials with repeated-flash electroretinography.
    Kuniyoshi K; Irifune M; Uno N; Nakao A; Shimomura Y
    Jpn J Ophthalmol; 2010 Jan; 54(1):32-5. PubMed ID: 20151273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The electroretinogram recorded at the onset of dark-adaptation: understanding the origin of the scotopic oscillatory potentials.
    Rousseau S; Lachapelle P
    Doc Ophthalmol; 1999; 99(2):135-50. PubMed ID: 11097118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The effect of stimulatory light intensity and duration of the preceding dark phase on the oscillatory potential in the human electroretinogram].
    Kojima M; Zrenner E; Langhof HJ
    Ber Zusammenkunft Dtsch Ophthalmol Ges; 1977; 74():733-8. PubMed ID: 577819
    [No Abstract]   [Full Text] [Related]  

  • 15. Measurement of the oscillatory potential of the electroretinogram in the domains of frequency and time.
    Li XX; Yuan N
    Doc Ophthalmol; 1990 Nov; 76(1):65-71. PubMed ID: 2078984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the oscillatory potentials of the human electroretinogram in light and dark adaptation. IV. Effect of adaptation to short flashes of light. Time interval and intensity of conditioning flashes. A Fourier analysis.
    Wachtmeister L
    Acta Ophthalmol (Copenh); 1973; 51(2):250-69. PubMed ID: 4801583
    [No Abstract]   [Full Text] [Related]  

  • 17. Attenuation of oscillatory potentials in nob2 mice.
    Yu M; Peachey NS
    Doc Ophthalmol; 2007 Nov; 115(3):173-86. PubMed ID: 17479213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroretinographic oscillatory potentials in diabetic retinopathy. An analysis in the domains of time and frequency.
    Li X; Sun X; Hu Y; Huang J; Zhang H
    Doc Ophthalmol; 1992; 81(2):173-9. PubMed ID: 1468347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incremental thresholds of the oscillatory potentials of the human electroretinogram in response to coloured light.
    Wachtmeister L
    Acta Ophthalmol (Copenh); 1974; 52(3):378-89. PubMed ID: 4408232
    [No Abstract]   [Full Text] [Related]  

  • 20. On the oscillatory potentials of the human electroretinogram in light and dark adaptation. 3. Thresholds and relation to stimulus intensity on adaptation to background light.
    Wachtmeister L
    Acta Ophthalmol (Copenh); 1973; 51(1):95-113. PubMed ID: 4739681
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.