These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 30677292)

  • 1. Dramatically Enhanced Broadband Photodetection by Dual Inversion Layers and Fowler-Nordheim Tunneling.
    Zou H; Li X; Dai G; Peng W; Ding Y; Zhang Y; Wang AC; Zhang SL; Xu C; Zhang SL; Wang ZL
    ACS Nano; 2019 Feb; 13(2):2289-2297. PubMed ID: 30677292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Piezo-Phototronic Effect on Selective Electron or Hole Transport through Depletion Region of Vis-NIR Broadband Photodiode.
    Zou H; Li X; Peng W; Wu W; Yu R; Wu C; Ding W; Hu F; Liu R; Zi Y; Wang ZL
    Adv Mater; 2017 Aug; 29(29):. PubMed ID: 28585269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Largely Improved Near-Infrared Silicon-Photosensing by the Piezo-Phototronic Effect.
    Dai Y; Wang X; Peng W; Zou H; Yu R; Ding Y; Wu C; Wang ZL
    ACS Nano; 2017 Jul; 11(7):7118-7125. PubMed ID: 28692283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Piezophototronic Effect Enhanced Flexible Tunneling Devices by Separating the Photosensitive Layer and the Piezoelectric Modulation Layer.
    Wang Y; Li F; Peng W; Xie W; Zhao X; He Y
    ACS Appl Mater Interfaces; 2024 Aug; 16(33):44278-44287. PubMed ID: 39133472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the Efficiency of Silicon-Based Solar Cells by the Piezo-Phototronic Effect.
    Zhu L; Wang L; Pan C; Chen L; Xue F; Chen B; Yang L; Su L; Wang ZL
    ACS Nano; 2017 Feb; 11(2):1894-1900. PubMed ID: 28085255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing performance of silicon-based p-n junction photodetectors by the piezo-phototronic effect.
    Wang Z; Yu R; Wen X; Liu Y; Pan C; Wu W; Wang ZL
    ACS Nano; 2014 Dec; 8(12):12866-73. PubMed ID: 25470314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hole-dominated Fowler-Nordheim tunneling in 2D heterojunctions for infrared imaging.
    Tong L; Peng M; Wu P; Huang X; Li Z; Peng Z; Lin R; Sun Q; Shen Y; Zhu X; Wang P; Xu J; Ye L
    Sci Bull (Beijing); 2021 Jan; 66(2):139-146. PubMed ID: 36654221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topological Crystalline Insulator SnTe/Si Vertical Heterostructure Photodetectors for High-Performance Near-Infrared Detection.
    Zhang H; Man B; Zhang Q
    ACS Appl Mater Interfaces; 2017 Apr; 9(16):14067-14077. PubMed ID: 28398029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanobowls-assisted broadband absorber for unbiased Si-based infrared photodetection.
    Zhou L; Zhang C; Li L; Liu T; Li K; Wu S; Li X
    Opt Express; 2021 May; 29(10):15505-15516. PubMed ID: 33985249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrostatically Doped Silicon Nanowire Arrays for Multispectral Photodetectors.
    Um HD; Solanki A; Jayaraman A; Gordon RG; Habbal F
    ACS Nano; 2019 Oct; 13(10):11717-11725. PubMed ID: 31577128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyro-Phototronic Effect Enhanced Pyramid Structured p-Si/n-ZnO Nanowires Heterojunction Photodetector.
    Xue M; Peng W; Tang X; Cai Y; Li F; He Y
    ACS Appl Mater Interfaces; 2023 Jan; 15(3):4677-4689. PubMed ID: 36625530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Piezo-phototronic effect-modulated carrier transport behavior in different regions of a Si/CdS heterojunction photodetector under a Vis-NIR waveband.
    Zhao ZH; Dai Y
    Phys Chem Chem Phys; 2019 May; 21(18):9574-9580. PubMed ID: 31020968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organic nanowire/crystalline silicon p-n heterojunctions for high-sensitivity, broadband photodetectors.
    Deng W; Jie J; Shang Q; Wang J; Zhang X; Yao S; Zhang Q; Zhang X
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):2039-45. PubMed ID: 25545887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photogating-controlled ZnO photodetector response for visible to near-infrared light.
    Wang Y; Zhong F; Wang H; Huang H; Li Q; Ye J; Peng M; He T; Chen Y; Wang Y; Zhang L; Zhu H; Wang X
    Nanotechnology; 2020 Aug; 31(33):335204. PubMed ID: 32348965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Sensitive MoS
    Ding EX; Liu P; Yoon HH; Ahmed F; Du M; Shafi AM; Mehmood N; Kauppinen EI; Sun Z; Lipsanen H
    ACS Appl Mater Interfaces; 2023 Jan; 15(3):4216-4225. PubMed ID: 36635093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrathin Broadband Germanium-Graphene Hybrid Photodetector with High Performance.
    Yang F; Cong H; Yu K; Zhou L; Wang N; Liu Z; Li C; Wang Q; Cheng B
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13422-13429. PubMed ID: 28361534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Responsivity, High-Detectivity, Ultrafast Topological Insulator Bi2Se3/Silicon Heterostructure Broadband Photodetectors.
    Zhang H; Zhang X; Liu C; Lee ST; Jie J
    ACS Nano; 2016 May; 10(5):5113-22. PubMed ID: 27116332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Piezo-phototronic Effect Enhanced UV/Visible Photodetector Based on Fully Wide Band Gap Type-II ZnO/ZnS Core/Shell Nanowire Array.
    Rai SC; Wang K; Ding Y; Marmon JK; Bhatt M; Zhang Y; Zhou W; Wang ZL
    ACS Nano; 2015 Jun; 9(6):6419-27. PubMed ID: 26039323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Room-temperature infrared photoluminescence and broadband photodetection characteristics of Ge/GeSi islands on silicon-on-insulator.
    Singh S; John JW; Sarkar A; Dhyani V; Das S; Ray SK
    Nanotechnology; 2024 Nov; 36(4):. PubMed ID: 39419071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Powered Photodetectors Based on Core-Shell ZnO-Co
    Ghamgosar P; Rigoni F; Kohan MG; You S; Morales EA; Mazzaro R; Morandi V; Almqvist N; Concina I; Vomiero A
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23454-23462. PubMed ID: 31252456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.