These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 30677300)

  • 1. Top-down Multiscale Approach To Simulate Peptide Self-Assembly from Monomers.
    Zhao X; Liao C; Ma YT; Ferrell JB; Schneebeli ST; Li J
    J Chem Theory Comput; 2019 Mar; 15(3):1514-1522. PubMed ID: 30677300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the role of hydration and confinement in the aggregation of amyloidogenic peptides Aβ(16-22) and Sup35(7-13) in AOT reverse micelles.
    Martinez AV; Małolepsza E; Rivera E; Lu Q; Straub JE
    J Chem Phys; 2014 Dec; 141(22):22D530. PubMed ID: 25494801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amyloid formation characteristics of GNNQQNY from yeast prion protein Sup35 and its seeding with heterogeneous polypeptides.
    Haratake M; Takiguchi T; Masuda N; Yoshida S; Fuchigami T; Nakayama M
    Colloids Surf B Biointerfaces; 2017 Jan; 149():72-79. PubMed ID: 27736724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A variational model for oligomer-formation process of GNNQQNY peptide from yeast prion protein Sup35.
    Qi X; Hong L; Zhang Y
    Biophys J; 2012 Feb; 102(3):597-605. PubMed ID: 22325283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clustering and Fibril Formation during GNNQQNY Aggregation: A Molecular Dynamics Study.
    Szała-Mendyk B; Molski A
    Biomolecules; 2020 Sep; 10(10):. PubMed ID: 32987720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multiscale approach to characterize the early aggregation steps of the amyloid-forming peptide GNNQQNY from the yeast prion sup-35.
    Nasica-Labouze J; Meli M; Derreumaux P; Colombo G; Mousseau N
    PLoS Comput Biol; 2011 May; 7(5):e1002051. PubMed ID: 21625573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural stability and dynamics of an amyloid-forming peptide GNNQQNY from the yeast prion sup-35.
    Zheng J; Ma B; Tsai CJ; Nussinov R
    Biophys J; 2006 Aug; 91(3):824-33. PubMed ID: 16679374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiscale Modeling of Amyloid Fibrils Formed by Aggregating Peptides Derived from the Amyloidogenic Fragment of the A-Chain of Insulin.
    Koliński M; Dec R; Dzwolak W
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations.
    Nguyen P; Derreumaux P
    Acc Chem Res; 2014 Feb; 47(2):603-11. PubMed ID: 24368046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulations on the oligomer-formation process of the GNNQQNY peptide from yeast prion protein Sup35.
    Zhang Z; Chen H; Bai H; Lai L
    Biophys J; 2007 Sep; 93(5):1484-92. PubMed ID: 17483185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The architecture of amyloid-like peptide fibrils revealed by X-ray scattering, diffraction and electron microscopy.
    Langkilde AE; Morris KL; Serpell LC; Svergun DI; Vestergaard B
    Acta Crystallogr D Biol Crystallogr; 2015 Apr; 71(Pt 4):882-95. PubMed ID: 25849399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HRMAS 1H NMR conformational study of the resin-bound amyloid-forming peptide GNNQQNY from the yeast prion Sup35.
    Andrey SB; Chan ML; Power WP
    J Phys Chem A; 2010 Mar; 114(10):3457-65. PubMed ID: 20155963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic analysis of structural transitions during GNNQQNY aggregation.
    Osborne KL; Bachmann M; Strodel B
    Proteins; 2013 Jul; 81(7):1141-55. PubMed ID: 23408546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interplay of sequence, topology and termini charge in determining the stability of the aggregates of GNNQQNY mutants: a molecular dynamics study.
    Srivastava A; Balaji PV
    PLoS One; 2014; 9(5):e96660. PubMed ID: 24817093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Mechanism and application of molecular self-assembly in Sup35 prion domain of Saccharomyces cerevisiae].
    Yin W; He J; Yu Z; Wang J
    Sheng Wu Gong Cheng Xue Bao; 2011 Oct; 27(10):1401-7. PubMed ID: 22260056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing the assembly of the Sup35 yeast prion fragment, GNNQQNY: structural changes accompany a fiber-to-crystal switch.
    Marshall KE; Hicks MR; Williams TL; Hoffmann SV; Rodger A; Dafforn TR; Serpell LC
    Biophys J; 2010 Jan; 98(2):330-8. PubMed ID: 20338855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of locking of peptides onto growing amyloid fibrils.
    Reddy G; Straub JE; Thirumalai D
    Proc Natl Acad Sci U S A; 2009 Jul; 106(29):11948-53. PubMed ID: 19581575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yeast Tripartite Biosensors Sensitive to Protein Stability and Aggregation Propensity.
    Sachsenhauser V; Deng X; Kim HH; Jankovic M; Bardwell JCA
    ACS Chem Biol; 2020 Apr; 15(4):1078-1088. PubMed ID: 32105441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. STITCHER: Dynamic assembly of likely amyloid and prion β-structures from secondary structure predictions.
    Bryan AW; O'Donnell CW; Menke M; Cowen LJ; Lindquist S; Berger B
    Proteins; 2012 Feb; 80(2):410-20. PubMed ID: 22095906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein misfolding and amyloid formation for the peptide GNNQQNY from yeast prion protein Sup35: simulation by reaction path annealing.
    Lipfert J; Franklin J; Wu F; Doniach S
    J Mol Biol; 2005 Jun; 349(3):648-58. PubMed ID: 15896350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.