These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 30677307)

  • 1. Rehabilitative devices for a top-down approach.
    Morone G; Spitoni GF; De Bartolo D; Ghanbari Ghooshchy S; Di Iulio F; Paolucci S; Zoccolotti P; Iosa M
    Expert Rev Med Devices; 2019 Mar; 16(3):187-195. PubMed ID: 30677307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virtual reality in cognitive and motor rehabilitation: facts, fiction and fallacies.
    Tieri G; Morone G; Paolucci S; Iosa M
    Expert Rev Med Devices; 2018 Feb; 15(2):107-117. PubMed ID: 29313388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exoskeleton and End-Effector Robots for Upper and Lower Limbs Rehabilitation: Narrative Review.
    Molteni F; Gasperini G; Cannaviello G; Guanziroli E
    PM R; 2018 Sep; 10(9 Suppl 2):S174-S188. PubMed ID: 30269804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain-computer interfaces and virtual reality for neurorehabilitation.
    Leeb R; Pérez-Marcos D
    Handb Clin Neurol; 2020; 168():183-197. PubMed ID: 32164852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the Use of Brain-Computer Interfaces in Stroke Neurorehabilitation.
    Yang S; Li R; Li H; Xu K; Shi Y; Wang Q; Yang T; Sun X
    Biomed Res Int; 2021; 2021():9967348. PubMed ID: 34239936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain computer interfaces for neurorehabilitation – its current status as a rehabilitation strategy post-stroke.
    van Dokkum LEH; Ward T; Laffont I
    Ann Phys Rehabil Med; 2015 Feb; 58(1):3-8. PubMed ID: 25614021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain-machine interfaces in neurorehabilitation of stroke.
    Soekadar SR; Birbaumer N; Slutzky MW; Cohen LG
    Neurobiol Dis; 2015 Nov; 83():172-9. PubMed ID: 25489973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Haptic Neurorehabilitation and Virtual Reality for Upper Limb Paralysis: A Review.
    Piggott L; Wagner S; Ziat M
    Crit Rev Biomed Eng; 2016; 44(1-2):1-32. PubMed ID: 27652449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rehabilitation robotics for the upper extremity: review with new directions for orthopaedic disorders.
    Hakim RM; Tunis BG; Ross MD
    Disabil Rehabil Assist Technol; 2017 Nov; 12(8):765-771. PubMed ID: 28035841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Music-based techniques and related devices in neurorehabilitation: a scoping review.
    Tramontano M; De Angelis S; Mastrogiacomo S; Princi AA; Ciancarelli I; Frizziero A; Iosa M; Paolucci S; Morone G
    Expert Rev Med Devices; 2021 Aug; 18(8):733-749. PubMed ID: 34162284
    [No Abstract]   [Full Text] [Related]  

  • 11. Virtual Reality for Neurorehabilitation: Insights From 3 European Clinics.
    O'Neil O; Fernandez MM; Herzog J; Beorchia M; Gower V; Gramatica F; Starrost K; Kiwull L
    PM R; 2018 Sep; 10(9 Suppl 2):S198-S206. PubMed ID: 30121365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence on the user's emotional state of the graphic complexity level in virtual therapies based on a robot-assisted neuro-rehabilitation platform.
    Villar BF; Viñas PF; Turiel JP; Carlos Fraile Marinero J; Gordaliza A
    Comput Methods Programs Biomed; 2020 Jul; 190():105359. PubMed ID: 32036205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The realization of robotic neurorehabilitation in clinical: use of computational intelligence and future prospects analysis.
    Yang J; Zhao Z; Du C; Wang W; Peng Q; Qiu J; Wang G
    Expert Rev Med Devices; 2020 Dec; 17(12):1311-1322. PubMed ID: 33252284
    [No Abstract]   [Full Text] [Related]  

  • 14. Virtual reality in neurorehabilitation: a review of its effects on multiple cognitive domains.
    Riva G; Mancuso V; Cavedoni S; Stramba-Badiale C
    Expert Rev Med Devices; 2020 Oct; 17(10):1035-1061. PubMed ID: 32962433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A learning-based agent for home neurorehabilitation.
    Lydakis A; Meng Y; Munroe C; Wu YN; Begum M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1233-1238. PubMed ID: 28813990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Top-down and bottom-up modeling in system pharmacology to understand clinical efficacy: An example with NRTIs of HIV-1.
    Duwal S; von Kleist M
    Eur J Pharm Sci; 2016 Oct; 94():72-83. PubMed ID: 26796142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain-machine interface facilitated neurorehabilitation via spinal stimulation after spinal cord injury: Recent progress and future perspectives.
    Alam M; Rodrigues W; Pham BN; Thakor NV
    Brain Res; 2016 Sep; 1646():25-33. PubMed ID: 27216571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Contributions of robotic devices to upper limb poststroke rehabilitation].
    Duret C
    Rev Neurol (Paris); 2010 May; 166(5):486-93. PubMed ID: 19942243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upper-Limb Robotic Exoskeletons for Neurorehabilitation: A Review on Control Strategies.
    Proietti T; Crocher V; Roby-Brami A; Jarrasse N
    IEEE Rev Biomed Eng; 2016; 9():4-14. PubMed ID: 27071194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of BCI systems in neurorehabilitation: a scoping review.
    Bamdad M; Zarshenas H; Auais MA
    Disabil Rehabil Assist Technol; 2015; 10(5):355-64. PubMed ID: 25560222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.