BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 30677336)

  • 1. Aggressiveness of Colletotrichum sublineola Strains from Sorghum bicolor and S. halepense to Sweet Sorghum Variety Sugar Drip, and Their Impact on Yield.
    Xavier KV; Pfeiffer T; Parreira DF; Chopra S; Vaillancourt L
    Plant Dis; 2017 Sep; 101(9):1578-1587. PubMed ID: 30677336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genotypic and Pathogenic Diversity of Colletotrichum sublineola Isolates from Sorghum (Sorghum bicolor) and Johnsongrass (S. halepense) in the Southeastern United States.
    Xavier KV; Mizubuti ESG; Queiroz MV; Chopra S; Vaillancourt L
    Plant Dis; 2018 Nov; 102(11):2341-2351. PubMed ID: 30199327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Genotyping by Sequencing to Map Two Novel Anthracnose Resistance Loci in Sorghum bicolor.
    J Felderhoff T; M McIntyre L; Saballos A; Vermerris W
    G3 (Bethesda); 2016 Jul; 6(7):1935-46. PubMed ID: 27194807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leaf angle distribution in Johnsongrass, leaf thickness in sorghum and Johnsongrass, and association with response to Colletotrichum sublineola.
    Ahn E; Odvody G; Prom LK; Magill C
    Sci Rep; 2020 Dec; 10(1):22320. PubMed ID: 33339866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide association study of Senegalese sorghum seedlings responding to a Texas isolate of Colletotrichum sublineola.
    Ahn E; Fall C; Prom LK; Magill C
    Sci Rep; 2022 Jul; 12(1):13025. PubMed ID: 35906277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anthracnose disease of centipedegrass turf caused by Colletotrichum eremochloae, a new fungal species closely related to Colletotrichum sublineola.
    Crouch JA; Tomaso-Peterson M
    Mycologia; 2012; 104(5):1085-96. PubMed ID: 22492402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elucidating Anthracnose Resistance Mechanisms in Sorghum-A Review.
    Stutts LR; Vermerris W
    Phytopathology; 2020 Dec; 110(12):1863-1876. PubMed ID: 33100146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and Characterization of
    Koima IN; Kilalo DC; Orek CO; Wagacha JM; Nyaboga EN
    J Fungi (Basel); 2023 Jan; 9(1):. PubMed ID: 36675921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The inheritance of anthracnose (Colletotrichum sublineola) resistance in sorghum differential lines QL3 and IS18760.
    Cuevas HE; Cruet-Burgos CM; Prom LK; Knoll JE; Stutts LR; Vermerris W
    Sci Rep; 2021 Oct; 11(1):20525. PubMed ID: 34654899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic mapping of sorghum resistance to an Illinois isolate of Colletotrichum sublineola.
    Khanal A; Adhikari P; Kaiser C; Lipka AE; Jamann TM; Mideros SX
    Plant Genome; 2022 Sep; 15(3):e20243. PubMed ID: 35822435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First Report of Ramulispora sorghicola in the United States Causing Oval Leaf Spot on Johnsongrass and Sorghum in Texas.
    Odvody GN; Rosenow DT; Black MC
    Plant Dis; 2006 Jan; 90(1):108. PubMed ID: 30786484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alternative splicing is a Sorghum bicolor defense response to fungal infection.
    Wang L; Chen M; Zhu F; Fan T; Zhang J; Lo C
    Planta; 2019 Nov; 251(1):14. PubMed ID: 31776670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GWAS analysis of sorghum association panel lines identifies SNPs associated with disease response to Texas isolates of Colletotrichum sublineola.
    Prom LK; Ahn E; Isakeit T; Magill C
    Theor Appl Genet; 2019 May; 132(5):1389-1396. PubMed ID: 30688991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the Sorghum-
    Abreha KB; Ortiz R; Carlsson AS; Geleta M
    Front Plant Sci; 2021; 12():641969. PubMed ID: 33959139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparative genomic analysis of putative pathogenicity genes in the host-specific sibling species Colletotrichum graminicola and Colletotrichum sublineola.
    Buiate EAS; Xavier KV; Moore N; Torres MF; Farman ML; Schardl CL; Vaillancourt LJ
    BMC Genomics; 2017 Jan; 18(1):67. PubMed ID: 28073340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Effects of Epicuticular Wax on Anthracnose Resistance of
    Xiong W; Liao L; Ni Y; Gao H; Yang J; Guo Y
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surveying the spatial distribution of feral sorghum (Sorghum bicolor L.) and its sympatry with johnsongrass (S. halepense) in South Texas.
    Ohadi S; Littlejohn M; Mesgaran M; Rooney W; Bagavathiannan M
    PLoS One; 2018; 13(4):e0195511. PubMed ID: 29698426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic diversity, population structure and anthracnose resistance response in a novel sweet sorghum diversity panel.
    Cuevas HE; Knoll JE; Prom LK; Stutts LR; Vermerris W
    Front Plant Sci; 2023; 14():1249555. PubMed ID: 37929175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-Wide Association Mapping of Anthracnose (
    Cuevas HE; Prom LK; Cruet-Burgos CM
    G3 (Bethesda); 2019 Sep; 9(9):2879-2885. PubMed ID: 31289022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide association analysis for response of Senegalese sorghum accessions to Texas isolates of anthracnose.
    Ahn E; Prom LK; Hu Z; Odvody G; Magill C
    Plant Genome; 2021 Jul; 14(2):e20097. PubMed ID: 33900689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.