These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 30677369)
1. Genetic Diversity of Stenocarpella maydis in the Major Corn Production Areas of the United States. Romero Luna MP; Aime MC; Chilvers MI; Wise KA Plant Dis; 2017 Dec; 101(12):2020-2026. PubMed ID: 30677369 [TBL] [Abstract][Full Text] [Related]
2. Bioactive metabolites from Stenocarpella maydis, a stalk and ear rot pathogen of maize. Wicklow DT; Rogers KD; Dowd PF; Gloer JB Fungal Biol; 2011 Feb; 115(2):133-42. PubMed ID: 21315311 [TBL] [Abstract][Full Text] [Related]
3. Fine-Scale Population Genetic Structure and Within-Tree Distribution of Mating Types of Venturia effusa, Cause of Pecan Scab in the United States. Bock CH; Young CA; Stevenson KL; Charlton ND Phytopathology; 2018 Nov; 108(11):1326-1336. PubMed ID: 29771192 [TBL] [Abstract][Full Text] [Related]
4. Comparative genomics of maize ear rot pathogens reveals expansion of carbohydrate-active enzymes and secondary metabolism backbone genes in Stenocarpella maydis. Zaccaron AZ; Woloshuk CP; Bluhm BH Fungal Biol; 2017 Nov; 121(11):966-983. PubMed ID: 29029703 [TBL] [Abstract][Full Text] [Related]
5. Diplodiatoxin, chaetoglobosins, and diplonine associated with a field outbreak of Stenocarpella ear rot in Illinois. Rogers KD; Cannistra JC; Gloer JB; Wicklow DT Mycotoxin Res; 2014 May; 30(2):61-70. PubMed ID: 24504633 [TBL] [Abstract][Full Text] [Related]
6. Draft Genome Sequence Resource for Telenko DEP; Ross TJ; Shim S; Wang Q; Singh R Mol Plant Microbe Interact; 2020 Jul; 33(7):884-887. PubMed ID: 32233960 [No Abstract] [Full Text] [Related]
7. Population structure and genetic diversity of Setosphaeria turcica from corn in Heilongjiang province, China. Li YG; Jiang WY; Zhang QF; Ali E; Ji P; Pan HY; Sun LP J Appl Microbiol; 2019 Dec; 127(6):1814-1823. PubMed ID: 31517423 [TBL] [Abstract][Full Text] [Related]
8. Cercospora zeina from Maize in South Africa Exhibits High Genetic Diversity and Lack of Regional Population Differentiation. Muller MF; Barnes I; Kunene NT; Crampton BG; Bluhm BH; Phillips SM; Olivier NA; Berger DK Phytopathology; 2016 Oct; 106(10):1194-1205. PubMed ID: 27392176 [TBL] [Abstract][Full Text] [Related]
9. Population genetic structure and migration patterns of the maize pathogenic fungus, Cercospora zeina in East and Southern Africa. Nsibo DL; Barnes I; Omondi DO; Dida MM; Berger DK Fungal Genet Biol; 2021 Apr; 149():103527. PubMed ID: 33524555 [TBL] [Abstract][Full Text] [Related]
10. Infection and ultrastructure of conidia and pycnidia of Stenocarpella maydis in maize. Xia Z; Wu H; Achar PN J Food Prot; 2011 Apr; 74(4):676-80. PubMed ID: 21477487 [TBL] [Abstract][Full Text] [Related]
11. Allozyme-specific modification of a maize seed chitinase by a protein secreted by the fungal pathogen Stenocarpella maydis. Naumann TA; Wicklow DT Phytopathology; 2010 Jul; 100(7):645-54. PubMed ID: 20528182 [TBL] [Abstract][Full Text] [Related]
12. Influence of farming practices on the population genetics of the maize pathogen Cercospora zeina in South Africa. Nsibo DL; Barnes I; Kunene NT; Berger DK Fungal Genet Biol; 2019 Apr; 125():36-44. PubMed ID: 30659907 [TBL] [Abstract][Full Text] [Related]
13. Diplonine, a neurotoxin isolated from cultures of the fungus Stenocarpella maydis (Berk.) Sacc. that induces diplodiosis. Snyman LD; Kellerman TS; Vleggaar R; Flett BC; Basson KM; Schultz RA J Agric Food Chem; 2011 Aug; 59(16):9039-44. PubMed ID: 21780820 [TBL] [Abstract][Full Text] [Related]
14. Development of Molecular Assays for Detection of Stenocarpella maydis and Stenocarpella macrospora in Corn. Romero MP; Wise KA Plant Dis; 2015 Jun; 99(6):761-769. PubMed ID: 30699541 [TBL] [Abstract][Full Text] [Related]
15. Characterization of Natural Isolates of Dai Y; Gan L; Ruan H; Shi N; Du Y; Chen F; Yang X Plant Dis; 2020 Feb; 104(2):323-329. PubMed ID: 31841376 [TBL] [Abstract][Full Text] [Related]
16. A survey of pre-harvest ear rot diseases of maize and associated mycotoxins in south and central Zambia. Mukanga M; Derera J; Tongoona P; Laing MD Int J Food Microbiol; 2010 Jul; 141(3):213-21. PubMed ID: 20626099 [TBL] [Abstract][Full Text] [Related]
17. Population Genetic Structure of Venturia effusa, Cause of Pecan Scab, in the Southeastern United States. Bock CH; Hotchkiss MW; Young CA; Charlton ND; Chakradhar M; Stevenson KL; Wood BW Phytopathology; 2017 May; 107(5):607-619. PubMed ID: 28414611 [TBL] [Abstract][Full Text] [Related]
18. Indirect selection for resistance to ear rot and leaf diseases in maize lines using biplots. Pereira GS; Camargos RB; Balestre M; Von Pinho RG; C Melo WM Genet Mol Res; 2015 Sep; 14(3):11052-62. PubMed ID: 26400335 [TBL] [Abstract][Full Text] [Related]
19. Analysis of mitochondrial genetic diversity of Ustilago maydis in Mexico. Jiménez-Becerril MF; Hernández-Delgado S; Solís-Oba M; González Prieto JM Mitochondrial DNA A DNA Mapp Seq Anal; 2018 Jan; 29(1):1-8. PubMed ID: 27728988 [TBL] [Abstract][Full Text] [Related]
20. Genetic Diversity and Population Structure of Cucurbit Gummy Stem Blight Fungi Based on Microsatellite Markers. Brewer MT; Rath M; Li HX Phytopathology; 2015 Jun; 105(6):815-24. PubMed ID: 25710205 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]