These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 30677685)
1. Assessing flood probability for transportation infrastructure based on catchment characteristics, sediment connectivity and remotely sensed soil moisture. Kalantari Z; Ferreira CSS; Koutsouris AJ; Ahlmer AK; Cerdà A; Destouni G Sci Total Environ; 2019 Apr; 661():393-406. PubMed ID: 30677685 [TBL] [Abstract][Full Text] [Related]
2. A method for mapping flood hazard along roads. Kalantari Z; Nickman A; Lyon SW; Olofsson B; Folkeson L J Environ Manage; 2014 Jan; 133():69-77. PubMed ID: 24361730 [TBL] [Abstract][Full Text] [Related]
3. Flood probability quantification for road infrastructure: Data-driven spatial-statistical approach and case study applications. Kalantari Z; Cavalli M; Cantone C; Crema S; Destouni G Sci Total Environ; 2017 Mar; 581-582():386-398. PubMed ID: 28062101 [TBL] [Abstract][Full Text] [Related]
4. The effects of land use and topographic changes on sediment connectivity in mountain catchments. Llena M; Vericat D; Cavalli M; Crema S; Smith MW Sci Total Environ; 2019 Apr; 660():899-912. PubMed ID: 30743975 [TBL] [Abstract][Full Text] [Related]
5. Fingerprinting changes in source contribution for evaluating soil response during an exceptional rainfall in Spanish pre-pyrenees. Gaspar L; Lizaga I; Blake WH; Latorre B; Quijano L; Navas A J Environ Manage; 2019 Jun; 240():136-148. PubMed ID: 30928791 [TBL] [Abstract][Full Text] [Related]
6. Bridge-specific flood risk assessment of transport networks using GIS and remotely sensed data. Loli M; Kefalas G; Dafis S; Mitoulis SA; Schmidt F Sci Total Environ; 2022 Dec; 850():157976. PubMed ID: 35964757 [TBL] [Abstract][Full Text] [Related]
7. Integrating connectivity theory within watershed modelling part I: Model formulation and investigating the timing of sediment connectivity. Mahoney DT; Fox J; Al-Aamery N; Clare E Sci Total Environ; 2020 Oct; 740():140385. PubMed ID: 32624177 [TBL] [Abstract][Full Text] [Related]
8. Field assessment of flood event suspended sediment transport from ephemeral streams in the tropical semi-arid catchments. Ondieki CM Environ Monit Assess; 1995 Mar; 35(1):43-54. PubMed ID: 24202211 [TBL] [Abstract][Full Text] [Related]
9. Influence of catchment-scale military land use on stream physical and organic matter variables in small southeastern plains catchments (USA). Maloney KO; Mulholland PJ; Feminella JW Environ Manage; 2005 May; 35(5):677-91. PubMed ID: 15902443 [TBL] [Abstract][Full Text] [Related]
10. A spatial framework to explore needs and opportunities for interoperable urban flood management. Dawson DA; Vercruysse K; Wright N Philos Trans A Math Phys Eng Sci; 2020 Apr; 378(2168):20190205. PubMed ID: 32063162 [TBL] [Abstract][Full Text] [Related]
11. Historical and projected changes in hydrological and sediment connectivity under climate change in a tropical catchment of Mexico. Rodríguez Flores S; Muñoz-Robles C; Ortíz-Rodríguez AJ; Quevedo Tiznado JA; Julio-Miranda P Sci Total Environ; 2022 Nov; 848():157731. PubMed ID: 35917965 [TBL] [Abstract][Full Text] [Related]
12. Progress in and prospects for fluvial flood modelling. Wheater HS Philos Trans A Math Phys Eng Sci; 2002 Jul; 360(1796):1409-31. PubMed ID: 12804257 [TBL] [Abstract][Full Text] [Related]
13. Predicting and communicating flood risk of transport infrastructure based on watershed characteristics. Michielsen A; Kalantari Z; Lyon SW; Liljegren E J Environ Manage; 2016 Nov; 182():505-518. PubMed ID: 27526088 [TBL] [Abstract][Full Text] [Related]
14. Street floods in Metro Manila and possible solutions. Lagmay AM; Mendoza J; Cipriano F; Delmendo PA; Lacsamana MN; Moises MA; Pellejera N; Punay KN; Sabio G; Santos L; Serrano J; Taniza HJ; Tingin NE J Environ Sci (China); 2017 Sep; 59():39-47. PubMed ID: 28888237 [TBL] [Abstract][Full Text] [Related]
15. Linear infrastructure impacts on landscape hydrology. Raiter KG; Prober SM; Possingham HP; Westcott F; Hobbs RJ J Environ Manage; 2018 Jan; 206():446-457. PubMed ID: 29107801 [TBL] [Abstract][Full Text] [Related]
16. Prioritising the placement of riparian vegetation to reduce flood risk and end-of-catchment sediment yields: Important considerations in hydrologically-variable regions. Croke J; Thompson C; Fryirs K J Environ Manage; 2017 Apr; 190():9-19. PubMed ID: 28024173 [TBL] [Abstract][Full Text] [Related]
17. Spatial scale effect on sediment dynamics in basin-wide floods within a typical agro-watershed: A case study in the hilly loess region of the Chinese Loess Plateau. Zhang LT; Li ZB; Wang SS Sci Total Environ; 2016 Dec; 572():476-486. PubMed ID: 27544352 [TBL] [Abstract][Full Text] [Related]
18. Assessing catchment scale flood resilience of urban areas using a grid cell based metric. Wang Y; Meng F; Liu H; Zhang C; Fu G Water Res; 2019 Oct; 163():114852. PubMed ID: 31325702 [TBL] [Abstract][Full Text] [Related]
19. Managing flood flow connectivity to landscapes to build buffering capacity to disturbances: An ecohydrologic modeling framework for drylands. Maxwell CM; Fernald AG; Cadol D; Faist AM; King JP J Environ Manage; 2021 Jan; 278(Pt 2):111486. PubMed ID: 33157463 [TBL] [Abstract][Full Text] [Related]
20. Magnetic susceptibility as a simple tracer for fluvial sediment source ascription during storm events. Rowntree KM; van der Waal BW; Pulley S J Environ Manage; 2017 Jun; 194():54-62. PubMed ID: 27939776 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]