BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 30677705)

  • 1. Multiscale modeling of skeletal muscle tissues based on analytical and numerical homogenization.
    Spyrou LA; Brisard S; Danas K
    J Mech Behav Biomed Mater; 2019 Apr; 92():97-117. PubMed ID: 30677705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A homogenization model of the Voigt type for skeletal muscle.
    Spyrou LA; Agoras M; Danas K
    J Theor Biol; 2017 Feb; 414():50-61. PubMed ID: 27884495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiscale modeling of skeletal muscle to explore its passive mechanical properties and experiments verification.
    Liu F; Wang M; Ma Y
    Math Biosci Eng; 2022 Jan; 19(2):1251-1279. PubMed ID: 35135203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skeletal muscle: Modeling the mechanical behavior by taking the hierarchical microstructure into account.
    Lamsfuss J; Bargmann S
    J Mech Behav Biomed Mater; 2021 Oct; 122():104670. PubMed ID: 34274750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro compressive properties of skeletal muscles and inverse finite element analysis: Comparison of human versus animals.
    Mo F; Zheng Z; Zhang H; Li G; Yang Z; Sun D
    J Biomech; 2020 Aug; 109():109916. PubMed ID: 32807316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On multiscale boundary conditions in the computational homogenization of an RVE of tendon fascicles.
    Carniel TA; Klahr B; Fancello EA
    J Mech Behav Biomed Mater; 2019 Mar; 91():131-138. PubMed ID: 30579110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A lower extremity model for muscle-driven simulation of activity using explicit finite element modeling.
    Hume DR; Navacchia A; Rullkoetter PJ; Shelburne KB
    J Biomech; 2019 Feb; 84():153-160. PubMed ID: 30630624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of interaction phenomena between crural fascia and muscles by using a three-dimensional numerical model.
    Pavan PG; Pachera P; Forestiero A; Natali AN
    Med Biol Eng Comput; 2017 Sep; 55(9):1683-1691. PubMed ID: 28188469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical modeling of bone as a multiscale poroelastic material by the homogenization technique.
    Perrin E; Bou-Saïd B; Massi F
    J Mech Behav Biomed Mater; 2019 Mar; 91():373-382. PubMed ID: 30660050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A physiologically based, multi-scale model of skeletal muscle structure and function.
    Röhrle O; Davidson JB; Pullan AJ
    Front Physiol; 2012; 3():358. PubMed ID: 22993509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiscale approach including microfibril scale to assess elastic constants of cortical bone based on neural network computation and homogenization method.
    Barkaoui A; Chamekh A; Merzouki T; Hambli R; Mkaddem A
    Int J Numer Method Biomed Eng; 2014 Mar; 30(3):318-38. PubMed ID: 24123969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An experimental study of nonlinear rate-dependent behaviour of skeletal muscle to obtain passive mechanical properties.
    Hashemi SS; Asgari M; Rasoulian A
    Proc Inst Mech Eng H; 2020 Jun; 234(6):590-602. PubMed ID: 32133933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiscale modeling of passive material influences on deformation and force output of skeletal muscles.
    He X; Taneja K; Chen JS; Lee CH; Hodgson J; Malis V; Sinha U; Sinha S
    Int J Numer Method Biomed Eng; 2022 Apr; 38(4):e3571. PubMed ID: 35049153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear hierarchical multiscale modeling of cortical bone considering its nanoscale microstructure.
    Ghanbari J; Naghdabadi R
    J Biomech; 2009 Jul; 42(10):1560-1565. PubMed ID: 19524928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the passive mechanical behaviour of skeletal muscle fibres: Micromechanical experiments and Bayesian hierarchical modelling.
    Böl M; Iyer R; Dittmann J; Garcés-Schröder M; Dietzel A
    Acta Biomater; 2019 Jul; 92():277-289. PubMed ID: 31077887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiscale damage and strength of lamellar bone modeled by cohesive finite elements.
    Hamed E; Jasiuk I
    J Mech Behav Biomed Mater; 2013 Dec; 28():94-110. PubMed ID: 23973769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The non-affine fiber network solver: A multiscale fiber network material model for finite-element analysis.
    Mahutga RR; Barocas VH; Alford PW
    J Mech Behav Biomed Mater; 2023 Aug; 144():105967. PubMed ID: 37329673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale approach incorporating tropocollagen scale to assess the effect of molecular age-related modifications on elastic constants of cortical bone based on finite element and homogenization methods.
    Mouss ME; Merzouki T; Rekik A; Hambli R
    J Mech Behav Biomed Mater; 2022 Apr; 128():105130. PubMed ID: 35203021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element implementation of mechanochemical phenomena in neutral deformable porous media under finite deformation.
    Ateshian GA; Albro MB; Maas S; Weiss JA
    J Biomech Eng; 2011 Aug; 133(8):081005. PubMed ID: 21950898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization.
    Goda I; Assidi M; Belouettar S; Ganghoffer JF
    J Mech Behav Biomed Mater; 2012 Dec; 16():87-108. PubMed ID: 23178480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.