BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 30677705)

  • 21. Validation of a new multiscale finite element analysis approach at the distal radius.
    Johnson JE; Troy KL
    Med Eng Phys; 2017 Jun; 44():16-24. PubMed ID: 28373011
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiscale composite model of fiber-reinforced tissues with direct representation of sub-tissue properties.
    Zhou M; Bezci SE; O'Connell GD
    Biomech Model Mechanobiol; 2020 Apr; 19(2):745-759. PubMed ID: 31686304
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anisotropic composite material phantom to improve skeletal muscle characterization using magnetic resonance elastography.
    Guidetti M; Lorgna G; Hammersly M; Lewis P; Klatt D; Vena P; Shah R; Royston TJ
    J Mech Behav Biomed Mater; 2019 Jan; 89():199-208. PubMed ID: 30292169
    [TBL] [Abstract][Full Text] [Related]  

  • 24. From single muscle fiber to whole muscle mechanics: a finite element model of a muscle bundle with fast and slow fibers.
    Marcucci L; Reggiani C; Natali AN; Pavan PG
    Biomech Model Mechanobiol; 2017 Dec; 16(6):1833-1843. PubMed ID: 28584973
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving finite element results in modeling heart valve mechanics.
    Earl E; Mohammadi H
    Proc Inst Mech Eng H; 2018 Jul; 232(7):718-725. PubMed ID: 29879869
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A 3D active-passive numerical skeletal muscle model incorporating initial tissue strains. Validation with experimental results on rat tibialis anterior muscle.
    Grasa J; Ramírez A; Osta R; Muñoz MJ; Soteras F; Calvo B
    Biomech Model Mechanobiol; 2011 Oct; 10(5):779-87. PubMed ID: 21127938
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A nonlinear dynamic finite element approach for simulating muscular hydrostats.
    Vavourakis V; Kazakidi A; Tsakiris DP; Ekaterinaris JA
    Comput Methods Biomech Biomed Engin; 2014; 17(8):917-31. PubMed ID: 23025686
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On a three-dimensional constitutive model for history effects in skeletal muscles.
    Seydewitz R; Siebert T; Böl M
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1665-1681. PubMed ID: 31102082
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The mechanical properties of human dentin for 3-D finite element modeling: Numerical and analytical evaluation.
    Grzebieluch W; Będziński R; Czapliński T; Kaczmarek U
    Adv Clin Exp Med; 2017 Jul; 26(4):645-653. PubMed ID: 28691430
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A mesostructurally-based anisotropic continuum model for biological soft tissues--decoupled invariant formulation.
    Limbert G
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1637-57. PubMed ID: 22098866
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting muscle tissue response from calibrated component models and histology-based finite element models.
    Kuravi R; Leichsenring K; Trostorf R; Morales-Orcajo E; Böl M; Ehret AE
    J Mech Behav Biomed Mater; 2021 May; 117():104375. PubMed ID: 33578299
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anisotropic constitutive model incorporating multiple damage mechanisms for multiscale simulation of dental enamel.
    Ma S; Scheider I; Bargmann S
    J Mech Behav Biomed Mater; 2016 Sep; 62():515-533. PubMed ID: 27294283
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Finite element simulation of skeletal muscular structures obtained from images of histological serial sections.
    Weichert F; Schröder A; Landes C; Walczak L; Müller H; Wagner M
    J Biomech; 2010 May; 43(8):1483-7. PubMed ID: 20181337
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A multiscale MD-FE model of diffusion in composite media with internal surface interaction based on numerical homogenization procedure.
    Kojic M; Milosevic M; Kojic N; Kim K; Ferrari M; Ziemys A
    Comput Methods Appl Mech Eng; 2014 Feb; 269():123-138. PubMed ID: 24578582
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A biophysically guided constitutive law of the musculotendon-complex: modelling and numerical implementation in Abaqus.
    Saini H; Röhrle O
    Comput Methods Programs Biomed; 2022 Nov; 226():107152. PubMed ID: 36194967
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Numerical simulation of the damage evolution in the pelvic floor muscles during childbirth.
    Oliveira DA; Parente MP; Calvo B; Mascarenhas T; Natal Jorge RM
    J Biomech; 2016 Feb; 49(4):594-601. PubMed ID: 26895779
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Techniques for modeling muscle-induced forces in finite element models of skeletal structures.
    Grosse IR; Dumont ER; Coletta C; Tolleson A
    Anat Rec (Hoboken); 2007 Sep; 290(9):1069-88. PubMed ID: 17721980
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Finite element modelling of contracting skeletal muscle.
    Oomens CW; Maenhout M; van Oijen CH; Drost MR; Baaijens FP
    Philos Trans R Soc Lond B Biol Sci; 2003 Sep; 358(1437):1453-60. PubMed ID: 14561336
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A coupled electromechanical model for the excitation-dependent contraction of skeletal muscle.
    Böl M; Weikert R; Weichert C
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1299-310. PubMed ID: 21783139
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling three-dimensional-printed trabecular metal structures with a homogenization approach: Application to hemipelvis reconstruction.
    Barbera L; Trabace M; Pennati G; Rodríguez Matas JF
    Int J Artif Organs; 2019 Oct; 42(10):575-585. PubMed ID: 31122108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.