These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 30677930)

  • 1. A method for advancing understanding of streamflow and geomorphological characteristics in mixed-land-use watersheds.
    Kellner E; Hubbart JA
    Sci Total Environ; 2019 Mar; 657():634-643. PubMed ID: 30677930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow class analyses of suspended sediment concentration and particle size in a mixed-land-use watershed.
    Kellner E; Hubbart JA
    Sci Total Environ; 2019 Jan; 648():973-983. PubMed ID: 30144765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphology of a Wetland Stream.
    Jurmu MC; Andrle R
    Environ Manage; 1997 Nov; 21(6):921-41. PubMed ID: 9336489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stream network geomorphology mediates predicted vulnerability of anadromous fish habitat to hydrologic change in southeast Alaska.
    Sloat MR; Reeves GH; Christiansen KR
    Glob Chang Biol; 2017 Feb; 23(2):604-620. PubMed ID: 27611839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hydrologic network supporting spatially referenced regression modeling in the Chesapeake Bay Watershed.
    Brakebill JW; Preston SD
    Environ Monit Assess; 2003; 81(1-3):73-84. PubMed ID: 12620006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Streamflow characteristics of Sangu-Matamuhuri watershed in the southeastern part of Bangladesh.
    Rudra AK; Alam AKMR
    Heliyon; 2023 Mar; 9(3):e14559. PubMed ID: 36967872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying linkages between land use, geomorphology, and aquatic habitat in a mixed-use watershed.
    McIlroy SK; Montagne C; Jones CA; McGlynn BL
    Environ Manage; 2008 Nov; 42(5):867-76. PubMed ID: 18663519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying loading, toxic concentrations, and systemic persistence of chloride in a contemporary mixed-land-use watershed using an experimental watershed approach.
    Hubbart JA; Kellner E; Hooper LW; Zeiger S
    Sci Total Environ; 2017 Mar; 581-582():822-832. PubMed ID: 28087074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Streamflow variability and hydroclimatic change at the Bear Brook Watershed in Maine (BBWM), USA.
    Kim JS; Jain S; Norton SA
    Environ Monit Assess; 2010 Dec; 171(1-4):47-58. PubMed ID: 20577798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of sub-watershed-scale stream chemistry regimes in an Appalachian mixed-land-use watershed.
    Kellner E; Hubbart J; Stephan K; Morrissey E; Freedman Z; Kutta E; Kelly C
    Environ Monit Assess; 2018 Sep; 190(10):586. PubMed ID: 30215141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatiotemporal variability of suspended sediment particle size in a mixed-land-use watershed.
    Kellner E; Hubbart JA
    Sci Total Environ; 2018 Feb; 615():1164-1175. PubMed ID: 29751422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of hydrologic vulnerability to urbanization and climate change in a rapidly changing watershed in the Southeast U.S.
    Suttles KM; Singh NK; Vose JM; Martin KL; Emanuel RE; Coulston JW; Saia SM; Crump MT
    Sci Total Environ; 2018 Dec; 645():806-816. PubMed ID: 30032080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving understanding of mixed-land-use watershed suspended sediment regimes: Mechanistic progress through high-frequency sampling.
    Kellner E; Hubbart JA
    Sci Total Environ; 2017 Nov; 598():228-238. PubMed ID: 28441601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term impacts of land cover changes on stream channel loss.
    Julian JP; Wilgruber NA; de Beurs KM; Mayer PM; Jawarneh RN
    Sci Total Environ; 2015 Dec; 537():399-410. PubMed ID: 26282774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial-scale effects on relative importance of physical habitat predictors of stream health.
    Frimpong EA; Sutton TM; Engel BA; Simon TP
    Environ Manage; 2005 Dec; 36(6):899-917. PubMed ID: 16261278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sources and transformations of nitrate from streams draining varying land uses: evidence from dual isotope analysis.
    Burns DA; Boyer EW; Elliott EM; Kendall C
    J Environ Qual; 2009; 38(3):1149-59. PubMed ID: 19398512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural and managed watersheds show similar responses to recent climate change.
    Ficklin DL; Abatzoglou JT; Robeson SM; Null SE; Knouft JH
    Proc Natl Acad Sci U S A; 2018 Aug; 115(34):8553-8557. PubMed ID: 30082407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upper washita river experimental watersheds: physiography data.
    Moriasi DN; Starks PJ; Steiner JL; Guzman JA; Allen PB; Naney JW
    J Environ Qual; 2014 Jul; 43(4):1298-309. PubMed ID: 25603077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling surface water dynamics in the Amazon Basin using MOSART-Inundation-v1.0: Impacts of geomorphological parameters and river flow representation.
    Luo X; Li HY; Leung LR; Tesfa TK; Getirana A; Papa F; Hess LL
    Geosci Model Dev; 2017 Mar; 10(3):1233-1259. PubMed ID: 32818050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sediment source identification and load prediction in a mixed-use Piedmont watershed, South Carolina.
    McCarney-Castle K; Childress TM; Heaton CR
    J Environ Manage; 2017 Jan; 185():60-69. PubMed ID: 28029480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.