These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 30677971)

  • 1. Economic losses of carbon emissions from circum-Arctic permafrost regions under RCP-SSP scenarios.
    Chen Y; Liu A; Zhang Z; Hope C; Crabbe MJC
    Sci Total Environ; 2019 Mar; 658():1064-1068. PubMed ID: 30677971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitigation of Arctic permafrost carbon loss through stratospheric aerosol geoengineering.
    Chen Y; Liu A; Moore JC
    Nat Commun; 2020 May; 11(1):2430. PubMed ID: 32415126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw.
    Voigt C; Marushchak ME; Mastepanov M; Lamprecht RE; Christensen TR; Dorodnikov M; Jackowicz-Korczyński M; Lindgren A; Lohila A; Nykänen H; Oinonen M; Oksanen T; Palonen V; Treat CC; Martikainen PJ; Biasi C
    Glob Chang Biol; 2019 May; 25(5):1746-1764. PubMed ID: 30681758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simplified, data-constrained approach to estimate the permafrost carbon-climate feedback.
    Koven CD; Schuur EA; Schädel C; Bohn TJ; Burke EJ; Chen G; Chen X; Ciais P; Grosse G; Harden JW; Hayes DJ; Hugelius G; Jafarov EE; Krinner G; Kuhry P; Lawrence DM; MacDougall AH; Marchenko SS; McGuire AD; Natali SM; Nicolsky DJ; Olefeldt D; Peng S; Romanovsky VE; Schaefer KM; Strauss J; Treat CC; Turetsky M
    Philos Trans A Math Phys Eng Sci; 2015 Nov; 373(2054):. PubMed ID: 26438276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats.
    Treat CC; Wollheim WM; Varner RK; Grandy AS; Talbot J; Frolking S
    Glob Chang Biol; 2014 Aug; 20(8):2674-86. PubMed ID: 24616169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Volatile emissions from thawing permafrost soils are influenced by meltwater drainage conditions.
    Kramshøj M; Albers CN; Svendsen SH; Björkman MP; Lindwall F; Björk RG; Rinnan R
    Glob Chang Biol; 2019 May; 25(5):1704-1716. PubMed ID: 30806027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Permafrost thawing puts the frozen carbon at risk over the Tibetan Plateau.
    Wang T; Yang D; Yang Y; Piao S; Li X; Cheng G; Fu B
    Sci Adv; 2020 May; 6(19):eaaz3513. PubMed ID: 32494710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An estimated cost of lost climate regulation services caused by thawing of the Arctic cryosphere.
    Euskirchen ES; Goodstein ES; Huntington HP
    Ecol Appl; 2013 Dec; 23(8):1869-80. PubMed ID: 24555313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pan-Arctic synthesis of CH
    Treat CC; Natali SM; Ernakovich J; Iversen CM; Lupascu M; McGuire AD; Norby RJ; Roy Chowdhury T; Richter A; Šantrůčková H; Schädel C; Schuur EAG; Sloan VL; Turetsky MR; Waldrop MP
    Glob Chang Biol; 2015 Jul; 21(7):2787-2803. PubMed ID: 25620695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Future projection of greenhouse gas emissions due to permafrost degradation using a simple numerical scheme with a global land surface model.
    Yokohata T; Saito K; Ito A; Ohno H; Tanaka K; Hajima T; Iwahana G
    Prog Earth Planet Sci; 2020; 7(1):56. PubMed ID: 33088673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large loss of CO
    Natali SM; Watts JD; Rogers BM; Potter S; Ludwig SM; Selbmann AK; Sullivan PF; Abbott BW; Arndt KA; Birch L; Björkman MP; Bloom AA; Celis G; Christensen TR; Christiansen CT; Commane R; Cooper EJ; Crill P; Czimczik C; Davydov S; Du J; Egan JE; Elberling B; Euskirchen ES; Friborg T; Genet H; Göckede M; Goodrich JP; Grogan P; Helbig M; Jafarov EE; Jastrow JD; Kalhori AAM; Kim Y; Kimball J; Kutzbach L; Lara MJ; Larsen KS; Lee BY; Liu Z; Loranty MM; Lund M; Lupascu M; Madani N; Malhotra A; Matamala R; McFarland J; McGuire AD; Michelsen A; Minions C; Oechel WC; Olefeldt D; Parmentier FW; Pirk N; Poulter B; Quinton W; Rezanezhad F; Risk D; Sachs T; Schaefer K; Schmidt NM; Schuur EAG; Semenchuk PR; Shaver G; Sonnentag O; Starr G; Treat CC; Waldrop MP; Wang Y; Welker J; Wille C; Xu X; Zhang Z; Zhuang Q; Zona D
    Nat Clim Chang; 2019 Nov; 9():852-857. PubMed ID: 35069807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of permafrost thaw on carbon emissions under aerobic and anaerobic environments in the Great Hing'an Mountains, China.
    Song C; Wang X; Miao Y; Wang J; Mao R; Song Y
    Sci Total Environ; 2014 Jul; 487():604-10. PubMed ID: 24135025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced methane emissions in former permafrost soils driven by vegetation and microbial changes following drainage.
    Keuschnig C; Larose C; Rudner M; Pesqueda A; Doleac S; Elberling B; Björk RG; Klemedtsson L; Björkman MP
    Glob Chang Biol; 2022 May; 28(10):3411-3425. PubMed ID: 35285570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circum-Arctic release of terrestrial carbon varies between regions and sources.
    Martens J; Wild B; Semiletov I; Dudarev OV; Gustafsson Ö
    Nat Commun; 2022 Oct; 13(1):5858. PubMed ID: 36195594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decade of experimental permafrost thaw reduces turnover of young carbon and increases losses of old carbon, without affecting the net carbon balance.
    Olid C; Klaminder J; Monteux S; Johansson M; Dorrepaal E
    Glob Chang Biol; 2020 Oct; 26(10):5886-5898. PubMed ID: 32681580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling past and future peatland carbon dynamics across the pan-Arctic.
    Chaudhary N; Westermann S; Lamba S; Shurpali N; Sannel ABK; Schurgers G; Miller PA; Smith B
    Glob Chang Biol; 2020 Jul; 26(7):4119-4133. PubMed ID: 32239563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Freezing/thawing index variations over the circum-Arctic from 1901 to 2015 and the permafrost extent.
    Shi Y; Niu F; Lin Z; Luo J
    Sci Total Environ; 2019 Apr; 660():1294-1305. PubMed ID: 30743924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methanogen community composition and rates of methane consumption in Canadian High Arctic permafrost soils.
    Allan J; Ronholm J; Mykytczuk NC; Greer CW; Onstott TC; Whyte LG
    Environ Microbiol Rep; 2014 Apr; 6(2):136-44. PubMed ID: 24596286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The positive net radiative greenhouse gas forcing of increasing methane emissions from a thawing boreal forest-wetland landscape.
    Helbig M; Chasmer LE; Kljun N; Quinton WL; Treat CC; Sonnentag O
    Glob Chang Biol; 2017 Jun; 23(6):2413-2427. PubMed ID: 27689625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal, Spatial, and Temperature Controls on Organic Carbon Mineralization and Methanogenesis in Arctic High-Centered Polygon Soils.
    Roy Chowdhury T; Berns EC; Moon JW; Gu B; Liang L; Wullschleger SD; Graham DE
    Front Microbiol; 2020; 11():616518. PubMed ID: 33505383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.