BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 30678039)

  • 21. An Activity-Aware Sampling Scheme for Mobile Phones in Activity Recognition.
    Chen Z; Chen J; Huang X
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32294935
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monitoring Student Activities with Smartwatches: On the Academic Performance Enhancement.
    Herrera-Alcántara O; Barrera-Animas AY; González-Mendoza M; Castro-Espinoza F
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30987130
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coarse-Fine Convolutional Deep-Learning Strategy for Human Activity Recognition.
    Avilés-Cruz C; Ferreyra-Ramírez A; Zúñiga-López A; Villegas-Cortéz J
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30935117
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Iss2Image: A Novel Signal-Encoding Technique for CNN-Based Human Activity Recognition.
    Hur T; Bang J; Huynh-The T; Lee J; Kim JI; Lee S
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30428600
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human activity classification with inertial sensors.
    Silva J; Monteiro M; Sousa F
    Stud Health Technol Inform; 2014; 200():101-4. PubMed ID: 24851971
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Public Domain Dataset for Real-Life Human Activity Recognition Using Smartphone Sensors.
    Garcia-Gonzalez D; Rivero D; Fernandez-Blanco E; Luaces MR
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32295028
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Atrial Fibrillation Detection via Accelerometer and Gyroscope of a Smartphone.
    Lahdenoja O; Hurnanen T; Iftikhar Z; Nieminen S; Knuutila T; Saraste A; Kiviniemi T; Vasankari T; Airaksinen J; Pankaala M; Koivisto T
    IEEE J Biomed Health Inform; 2018 Jan; 22(1):108-118. PubMed ID: 28391210
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
    Gao L; Bourke AK; Nelson J
    Med Eng Phys; 2014 Jun; 36(6):779-85. PubMed ID: 24636448
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effectiveness of simple heuristic features in sensor orientation and placement problems in human activity recognition using a single smartphone accelerometer.
    Barua A; Jiang X; Fuller D
    Biomed Eng Online; 2024 Feb; 23(1):21. PubMed ID: 38368358
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SUPAR: Smartphone as a ubiquitous physical activity recognizer for u-healthcare services.
    Fahim M; Lee S; Yoon Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3666-9. PubMed ID: 25570786
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Validation of smartphone step count algorithm used in STARFISH smartphone application.
    Dybus A; Paul L; Wyke S; Brewster S; Gill JMR; Ramsay A; Campbell E
    Technol Health Care; 2017 Dec; 25(6):1157-1162. PubMed ID: 28946599
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Human Activity Recognition for Indoor Localization Using Smartphone Inertial Sensors.
    Moreira D; Barandas M; Rocha T; Alves P; Santos R; Leonardo R; Vieira P; Gamboa H
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577526
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced Human Activity Recognition Based on Smartphone Sensor Data Using Hybrid Feature Selection Model.
    Ahmed N; Rafiq JI; Islam MR
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31935943
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Cascade Ensemble Learning Model for Human Activity Recognition with Smartphones.
    Xu S; Tang Q; Jin L; Pan Z
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31109126
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Classification of Human Daily Activities Using Ensemble Methods Based on Smartphone Inertial Sensors.
    Ku Abd Rahim KN; Elamvazuthi I; Izhar LI; Capi G
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30486242
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Parkinson's disease detection from 20-step walking tests using inertial sensors of a smartphone: Machine learning approach based on an observational case-control study.
    Juutinen M; Wang C; Zhu J; Haladjian J; Ruokolainen J; Puustinen J; Vehkaoja A
    PLoS One; 2020; 15(7):e0236258. PubMed ID: 32701955
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Towards the run and walk activity classification through step detection--an android application.
    Oner M; Pulcifer-Stump JA; Seeling P; Kaya T
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1980-3. PubMed ID: 23366305
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Validity of the Apple iPhone® /iPod Touch® as an accelerometer-based physical activity monitor: a proof-of-concept study.
    Nolan M; Mitchell JR; Doyle-Baker PK
    J Phys Act Health; 2014 May; 11(4):759-69. PubMed ID: 23575387
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fusion of smartphone motion sensors for physical activity recognition.
    Shoaib M; Bosch S; Incel OD; Scholten H; Havinga PJ
    Sensors (Basel); 2014 Jun; 14(6):10146-76. PubMed ID: 24919015
    [TBL] [Abstract][Full Text] [Related]  

  • 40. REAL-Time Smartphone Activity Classification Using Inertial Sensors-Recognition of Scrolling, Typing, and Watching Videos While Sitting or Walking.
    Zhuo S; Sherlock L; Dobbie G; Koh YS; Russello G; Lottridge D
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31991636
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.