These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
389 related articles for article (PubMed ID: 30678074)
1. The Importance of Physioxia in Mesenchymal Stem Cell Chondrogenesis and the Mechanisms Controlling Its Response. Pattappa G; Johnstone B; Zellner J; Docheva D; Angele P Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30678074 [TBL] [Abstract][Full Text] [Related]
2. Physioxia Has a Beneficial Effect on Cartilage Matrix Production in Interleukin-1 Beta-Inhibited Mesenchymal Stem Cell Chondrogenesis. Pattappa G; Schewior R; Hofmeister I; Seja J; Zellner J; Johnstone B; Docheva D; Angele P Cells; 2019 Aug; 8(8):. PubMed ID: 31434236 [TBL] [Abstract][Full Text] [Related]
3. Responses to altered oxygen tension are distinct between human stem cells of high and low chondrogenic capacity. Anderson DE; Markway BD; Bond D; McCarthy HE; Johnstone B Stem Cell Res Ther; 2016 Oct; 7(1):154. PubMed ID: 27765063 [TBL] [Abstract][Full Text] [Related]
4. Similar properties of chondrocytes from osteoarthritis joints and mesenchymal stem cells from healthy donors for tissue engineering of articular cartilage. Fernandes AM; Herlofsen SR; Karlsen TA; Küchler AM; Fløisand Y; Brinchmann JE PLoS One; 2013; 8(5):e62994. PubMed ID: 23671648 [TBL] [Abstract][Full Text] [Related]
5. Chondrogenic induction of human osteoarthritic cartilage-derived mesenchymal stem cells activates mineralization and hypertrophic and osteogenic gene expression through a mechanomiR. Hu N; Gao Y; Jayasuriya CT; Liu W; Du H; Ding J; Feng M; Chen Q Arthritis Res Ther; 2019 Jul; 21(1):167. PubMed ID: 31287025 [TBL] [Abstract][Full Text] [Related]
6. The Regulatory Role of Signaling Crosstalk in Hypertrophy of MSCs and Human Articular Chondrocytes. Zhong L; Huang X; Karperien M; Post JN Int J Mol Sci; 2015 Aug; 16(8):19225-47. PubMed ID: 26287176 [TBL] [Abstract][Full Text] [Related]
7. Human articular chondrocytes secrete parathyroid hormone-related protein and inhibit hypertrophy of mesenchymal stem cells in coculture during chondrogenesis. Fischer J; Dickhut A; Rickert M; Richter W Arthritis Rheum; 2010 Sep; 62(9):2696-706. PubMed ID: 20496422 [TBL] [Abstract][Full Text] [Related]
8. The use of mesenchymal stem cells for chondrogenesis. Pelttari K; Steck E; Richter W Injury; 2008 Apr; 39 Suppl 1():S58-65. PubMed ID: 18313473 [TBL] [Abstract][Full Text] [Related]
9. Enhancing chondrogenic phenotype for cartilage tissue engineering: monoculture and coculture of articular chondrocytes and mesenchymal stem cells. Hubka KM; Dahlin RL; Meretoja VV; Kasper FK; Mikos AG Tissue Eng Part B Rev; 2014 Dec; 20(6):641-54. PubMed ID: 24834484 [TBL] [Abstract][Full Text] [Related]
10. The effect of hypoxia on chondrogenesis of equine synovial membrane-derived and bone marrow-derived mesenchymal stem cells. Gale AL; Mammone RM; Dodson ME; Linardi RL; Ortved KF BMC Vet Res; 2019 Jun; 15(1):201. PubMed ID: 31200719 [TBL] [Abstract][Full Text] [Related]
12. Comparison of the Chondrogenic Potential of Mesenchymal Stem Cells Derived from Bone Marrow and Umbilical Cord Blood Intended for Cartilage Tissue Engineering. Contentin R; Demoor M; Concari M; Desancé M; Audigié F; Branly T; Galéra P Stem Cell Rev Rep; 2020 Feb; 16(1):126-143. PubMed ID: 31745710 [TBL] [Abstract][Full Text] [Related]
13. Molecular characterization of mesenchymal stem cells in human osteoarthritis cartilage reveals contribution to the OA phenotype. Jayasuriya CT; Hu N; Li J; Lemme N; Terek R; Ehrlich MG; Chen Q Sci Rep; 2018 May; 8(1):7044. PubMed ID: 29728632 [TBL] [Abstract][Full Text] [Related]
14. Inverse regulation of early and late chondrogenic differentiation by oxygen tension provides cues for stem cell-based cartilage tissue engineering. Portron S; Hivernaud V; Merceron C; Lesoeur J; Masson M; Gauthier O; Vinatier C; Beck L; Guicheux J Cell Physiol Biochem; 2015; 35(3):841-57. PubMed ID: 25632940 [TBL] [Abstract][Full Text] [Related]
15. Hypoxia Is a Critical Parameter for Chondrogenic Differentiation of Human Umbilical Cord Blood Mesenchymal Stem Cells in Type I/III Collagen Sponges. Gómez-Leduc T; Desancé M; Hervieu M; Legendre F; Ollitrault D; de Vienne C; Herlicoviez M; Galéra P; Demoor M Int J Mol Sci; 2017 Sep; 18(9):. PubMed ID: 28885597 [TBL] [Abstract][Full Text] [Related]
16. Characterization and use of Equine Bone Marrow Mesenchymal Stem Cells in Equine Cartilage Engineering. Study of their Hyaline Cartilage Forming Potential when Cultured under Hypoxia within a Biomaterial in the Presence of BMP-2 and TGF-ß1. Branly T; Bertoni L; Contentin R; Rakic R; Gomez-Leduc T; Desancé M; Hervieu M; Legendre F; Jacquet S; Audigié F; Denoix JM; Demoor M; Galéra P Stem Cell Rev Rep; 2017 Oct; 13(5):611-630. PubMed ID: 28597211 [TBL] [Abstract][Full Text] [Related]
17. The effect of hypoxia on the chondrogenic differentiation of co-cultured articular chondrocytes and mesenchymal stem cells in scaffolds. Meretoja VV; Dahlin RL; Wright S; Kasper FK; Mikos AG Biomaterials; 2013 Jun; 34(17):4266-73. PubMed ID: 23489925 [TBL] [Abstract][Full Text] [Related]
18. Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Pelttari K; Winter A; Steck E; Goetzke K; Hennig T; Ochs BG; Aigner T; Richter W Arthritis Rheum; 2006 Oct; 54(10):3254-66. PubMed ID: 17009260 [TBL] [Abstract][Full Text] [Related]