These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 30678151)

  • 1. An Approach for Managing Manufacturing Assets through Radio Frequency Energy Harvesting.
    Tahir MA; Ramis Ferrer B; Martinez Lastra JL
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30678151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radio Frequency Identification and Sensing Techniques and Their Applications-A Review of the State-of-the-Art.
    Cui L; Zhang Z; Gao N; Meng Z; Li Z
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31533321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radio-frequency energy harvesting for wearable sensors.
    Borges LM; Chávez-Santiago R; Barroca N; Velez FJ; Balasingham I
    Healthc Technol Lett; 2015 Feb; 2(1):22-7. PubMed ID: 26609400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced Monitoring Systems Based on Battery-Less Asset Tracking Modules Energized through RF Wireless Power Transfer.
    La Rosa R; Dehollain C; Livreri P
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32466540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of radio-frequency identification (RFID) sensors suitable for smart-monitoring applications in sewer systems.
    Tatiparthi SR; De Costa YG; Whittaker CN; Hu S; Yuan Z; Zhong RY; Zhuang WQ
    Water Res; 2021 Jun; 198():117107. PubMed ID: 33895588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracking blood products in blood centres using radio frequency identification: a comprehensive assessment.
    Davis R; Geiger B; Gutierrez A; Heaser J; Veeramani D
    Vox Sang; 2009 Jul; 97(1):50-60. PubMed ID: 19320963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reliable Identification Schemes for Asset and Production Tracking in Industry 4.0.
    Frankó A; Vida G; Varga P
    Sensors (Basel); 2020 Jul; 20(13):. PubMed ID: 32630771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cost-Effective Implementation of a Temperature Traceability System Based on Smart RFID Tags and IoT Services.
    Urbano O; Perles A; Pedraza C; Rubio-Arraez S; Castelló ML; Ortola MD; Mercado R
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32093218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wireless Energy Transfer Powered Wireless Sensor Node for Green IoT: Design, Implementation and Evaluation.
    Janhunen J; Mikhaylov K; Petäjäjärvi J; Sonkki M
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30597860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Survey of NFC Sensors Based on Energy Harvesting for IoT Applications.
    Lazaro A; Villarino R; Girbau D
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30400233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Passive multivariable temperature and conductivity RFID sensors for single-use biopharmaceutical manufacturing components.
    Potyrailo RA; Wortley T; Surman C; Monk D; Morris WG; Vincent M; Diana R; Pizzi V; Carter J; Gach G; Klensmeden S; Ehring H
    Biotechnol Prog; 2011; 27(3):875-84. PubMed ID: 21538970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abnormal Condition Monitoring of Workpieces Based on RFID for Wisdom Manufacturing Workshops.
    Zhang C; Yao X; Zhang J
    Sensors (Basel); 2015 Dec; 15(12):30165-86. PubMed ID: 26633418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radio frequency identification enabled wireless sensing for intelligent food logistics.
    Zou Z; Chen Q; Uysal I; Zheng L
    Philos Trans A Math Phys Eng Sci; 2014 Jun; 372(2017):20130313. PubMed ID: 24797140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring the use of anatomical teaching material using a low-cost radio frequency identification system: A comprehensive assessment.
    Noël GP; Connolly CC
    Anat Sci Educ; 2016; 9(2):197-202. PubMed ID: 26441139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RF Energy Harvesting and Information Transmission Based on NOMA for Wireless Powered IoT Relay Systems.
    Rauniyar A; Engelstad P; Østerbø ON
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30262773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Medium and Short Wave RF Energy Harvester for Powering Wireless Sensor Networks.
    Leon-Gil JA; Cortes-Loredo A; Fabian-Mijangos A; Martinez-Flores JJ; Tovar-Padilla M; Cardona-Castro MA; Morales-Sánchez A; Alvarez-Quintana J
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29510482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Technologies towards the Implementation and Exploitation of "Green" Wireless Agriculture Sensors.
    Vassiliou L; Nadeem A; Chatzichristodoulou D; Vryonides P; Nikolaou S
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Battery-Free Smart Sock for Abnormal Relative Plantar Pressure Monitoring.
    Lin X; Seet BC
    IEEE Trans Biomed Circuits Syst; 2017 Apr; 11(2):464-473. PubMed ID: 28114035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy Harvesting Technologies for Achieving Self-Powered Wireless Sensor Networks in Machine Condition Monitoring: A Review.
    Tang X; Wang X; Cattley R; Gu F; Ball AD
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30477176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A non-intrusive Industry 4.0 retrofitting approach for collaborative maintenance in traditional manufacturing.
    García Á; Bregon A; Martínez-Prieto MA
    Comput Ind Eng; 2022 Feb; 164():107896. PubMed ID: 36569781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.