These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30678171)

  • 1. Identification of D Modification Sites by Integrating Heterogeneous Features in
    Feng P; Xu Z; Yang H; Lv H; Ding H; Liu L
    Molecules; 2019 Jan; 24(3):. PubMed ID: 30678171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate identification of RNA D modification using multiple features.
    Dou L; Zhou W; Zhang L; Xu L; Han K
    RNA Biol; 2021 Dec; 18(12):2236-2246. PubMed ID: 33729104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A conserved family of Saccharomyces cerevisiae synthases effects dihydrouridine modification of tRNA.
    Xing F; Martzen MR; Phizicky EM
    RNA; 2002 Mar; 8(3):370-81. PubMed ID: 12003496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The specificities of four yeast dihydrouridine synthases for cytoplasmic tRNAs.
    Xing F; Hiley SL; Hughes TR; Phizicky EM
    J Biol Chem; 2004 Apr; 279(17):17850-60. PubMed ID: 14970222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of dihydrouridine in folding of the D-arm in tRNA.
    Dyubankova N; Sochacka E; Kraszewska K; Nawrot B; Herdewijn P; Lescrinier E
    Org Biomol Chem; 2015 May; 13(17):4960-6. PubMed ID: 25815904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrolysis of dihydrouridine and related compounds.
    House CH; Miller SL
    Biochemistry; 1996 Jan; 35(1):315-20. PubMed ID: 8555190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. iRNAD: a computational tool for identifying D modification sites in RNA sequence.
    Xu ZC; Feng PM; Yang H; Qiu WR; Chen W; Lin H
    Bioinformatics; 2019 Dec; 35(23):4922-4929. PubMed ID: 31077296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. iRNA-m5U: A sequence based predictor for identifying 5-methyluridine modification sites in Saccharomyces cerevisiae.
    Feng P; Chen W
    Methods; 2022 Jul; 203():28-31. PubMed ID: 33882361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DHU-Pred: accurate prediction of dihydrouridine sites using position and composition variant features on diverse classifiers.
    Suleman MT; Alkhalifah T; Alturise F; Khan YD
    PeerJ; 2022; 10():e14104. PubMed ID: 36320563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of D Modification Sites Using a Random Forest Model Based on Nucleotide Chemical Properties.
    Zhu H; Ao CY; Ding YJ; Hao HX; Yu L
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PseUI: Pseudouridine sites identification based on RNA sequence information.
    He J; Fang T; Zhang Z; Huang B; Zhu X; Xiong Y
    BMC Bioinformatics; 2018 Aug; 19(1):306. PubMed ID: 30157750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dihydrouridine-deficient tRNAs in Saccharomyces cerevisiae.
    Lo RY; Bell JB; Roy KL
    Nucleic Acids Res; 1982 Feb; 10(3):889-902. PubMed ID: 7038626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying 2'-O-methylationation sites by integrating nucleotide chemical properties and nucleotide compositions.
    Chen W; Feng P; Tang H; Ding H; Lin H
    Genomics; 2016 Jun; 107(6):255-8. PubMed ID: 27191866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unveiling structural and functional divergences of bacterial tRNA dihydrouridine synthases: perspectives on the evolution scenario.
    Bou-Nader C; Montémont H; Guérineau V; Jean-Jean O; Brégeon D; Hamdane D
    Nucleic Acids Res; 2018 Feb; 46(3):1386-1394. PubMed ID: 29294097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Major identity determinants for enzymatic formation of ribothymidine and pseudouridine in the T psi-loop of yeast tRNAs.
    Becker HF; Motorin Y; Sissler M; Florentz C; Grosjean H
    J Mol Biol; 1997 Dec; 274(4):505-18. PubMed ID: 9417931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying RNA 5-methylcytosine sites via pseudo nucleotide compositions.
    Feng P; Ding H; Chen W; Lin H
    Mol Biosyst; 2016 Oct; 12(11):3307-3311. PubMed ID: 27531244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of 5-fluorouridine on modified nucleosides in mouse liver transfer RNA.
    Lu LW; Chiang GH; Tseng WC; Randerath K
    Biochem Biophys Res Commun; 1976 Dec; 73(4):1075-82. PubMed ID: 15625884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pRNAm-PC: Predicting N(6)-methyladenosine sites in RNA sequences via physical-chemical properties.
    Liu Z; Xiao X; Yu DJ; Jia J; Qiu WR; Chou KC
    Anal Biochem; 2016 Mar; 497():60-7. PubMed ID: 26748145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Posttranscriptional modification of tRNA in psychrophilic bacteria.
    Dalluge JJ; Hamamoto T; Horikoshi K; Morita RY; Stetter KO; McCloskey JA
    J Bacteriol; 1997 Mar; 179(6):1918-23. PubMed ID: 9068636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Codon recognition by tRNA molecules with a modified or unmodified uridine at the first position of the anticodon.
    Okumura S; Takai K; Yokoyama S; Takaku H
    Nucleic Acids Symp Ser; 1995; (34):203-4. PubMed ID: 8841623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.