BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 30678201)

  • 1. Rapid Water Softening with TEMPO-Oxidized/Phosphorylated Nanopapers.
    Mautner A; Kobkeatthawin T; Mayer F; Plessl C; Gorgieva S; Kokol V; Bismarck A
    Nanomaterials (Basel); 2019 Jan; 9(2):. PubMed ID: 30678201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial nanocellulose papers with high porosity for optimized permeance and rejection of nm-sized pollutants.
    Mautner A; Bismarck A
    Carbohydr Polym; 2021 Jan; 251():117130. PubMed ID: 33142661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fungal chitin-glucan nanopapers with heavy metal adsorption properties for ultrafiltration of organic solvents and water.
    Yousefi N; Jones M; Bismarck A; Mautner A
    Carbohydr Polym; 2021 Feb; 253():117273. PubMed ID: 33278945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fast method to prepare mechanically strong and water resistant lignocellulosic nanopapers.
    Sethi J; Visanko M; Österberg M; Sirviö JA
    Carbohydr Polym; 2019 Jan; 203():148-156. PubMed ID: 30318198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Better together: synergy in nanocellulose blends.
    Mautner A; Mayer F; Hervy M; Lee KY; Bismarck A
    Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2112):. PubMed ID: 29277741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile and quick formation of cellulose nanopaper with nanoparticles and its characterization.
    Ma L; Xu Z; Zhang X; Lin J; Tai R
    Carbohydr Polym; 2019 Oct; 221():195-201. PubMed ID: 31227158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clearly transparent and air-permeable nanopaper with porous structures consisting of TEMPO-oxidized cellulose nanofibers.
    Huang Y; Kasuga T; Nogi M; Koga H
    RSC Adv; 2023 Jul; 13(31):21494-21501. PubMed ID: 37465580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sonication-assisted surface modification method to expedite the water removal from cellulose nanofibers for use in nanopapers and paper making.
    Sethi J; Oksman K; Illikainen M; Sirviö JA
    Carbohydr Polym; 2018 Oct; 197():92-99. PubMed ID: 30007663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reducing the Amount of Catalyst in TEMPO-Oxidized Cellulose Nanofibers: Effect on Properties and Cost.
    Serra A; González I; Oliver-Ortega H; Tarrès Q; Delgado-Aguilar M; Mutjé P
    Polymers (Basel); 2017 Oct; 9(11):. PubMed ID: 30965860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oriented Cellulose Nanopaper (OCNP) based on bagasse cellulose nanofibrils.
    Djafari Petroudy SR; Rasooly Garmaroody E; Rudi H
    Carbohydr Polym; 2017 Feb; 157():1883-1891. PubMed ID: 27987908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong and electrically conductive nanopaper from cellulose nanofibers and polypyrrole.
    Lay M; Méndez JA; Delgado-Aguilar M; Bun KN; Vilaseca F
    Carbohydr Polym; 2016 Nov; 152():361-369. PubMed ID: 27516283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible, Transparent, and Hazy Cellulose Nanopaper with Efficient Near-Infrared Luminescence Fabricated by 2D Lanthanide (Ln = Nd, Yb, or Er) Metal-Organic-Framework-Grafted Oxidized Cellulose Nanofibrils.
    Chang H; Yao S; Kang X; Zhang X; Ma N; Zhang M; Li X; Zhang Z
    Inorg Chem; 2020 Nov; 59(22):16611-16621. PubMed ID: 33103421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilization of antimicrobial peptides onto cellulose nanopaper.
    González I; Oliver-Ortega H; Tarrés Q; Delgado-Aguilar M; Mutjé P; Andreu D
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):741-748. PubMed ID: 28735005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-based films/nanopapers from lignocellulosic wastes for production of added-value micro-/nanomaterials.
    Guimarães BMR; Scatolino MV; Martins MA; Ferreira SR; Mendes LM; Lima JT; Junior MG; Tonoli GHD
    Environ Sci Pollut Res Int; 2022 Feb; 29(6):8665-8683. PubMed ID: 34490567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Fibrillating Cellulose Fibers: Rapid In Situ Nanofibrillation to Prepare Strong, Transparent, and Gas Barrier Nanopapers.
    Gorur YC; Larsson PA; Wågberg L
    Biomacromolecules; 2020 Apr; 21(4):1480-1488. PubMed ID: 32167304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulose Nanofiber-Based Polyaniline Flexible Papers as Sustainable Microwave Absorbers in the X-Band.
    Gopakumar DA; Pai AR; Pottathara YB; Pasquini D; Carlos de Morais L; Luke M; Kalarikkal N; Grohens Y; Thomas S
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):20032-20043. PubMed ID: 29812890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stereoselectively water resistant hybrid nanopapers prepared by cellulose nanofibers and water-based polyurethane.
    Sethi J; Farooq M; Österberg M; Illikainen M; Sirviö JA
    Carbohydr Polym; 2018 Nov; 199():286-293. PubMed ID: 30143131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Electroconductive Nanopapers Based on Nanocellulose and Copper Nanowires: A New Generation of Flexible and Sustainable Electrical Materials.
    Pinto RJB; Martins MA; Lucas JMF; Vilela C; Sales AJM; Costa LC; Marques PAAP; Freire CSR
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):34208-34216. PubMed ID: 32588615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study of aramid nanofiber (ANF) and cellulose nanofiber (CNF).
    Yang B; Zhang M; Lu Z; Tan J; Luo J; Song S; Ding X; Wang L; Lu P; Zhang Q
    Carbohydr Polym; 2019 Mar; 208():372-381. PubMed ID: 30658813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing strength and toughness of cellulose nanofibril network structures with an adhesive peptide.
    Trovatti E; Tang H; Hajian A; Meng Q; Gandini A; Berglund LA; Zhou Q
    Carbohydr Polym; 2018 Feb; 181():256-263. PubMed ID: 29253970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.