These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30678229)

  • 1. Vortex Dynamics in Trabeculated Embryonic Ventricles.
    Battista NA; Douglas DR; Lane AN; Samsa LA; Liu J; Miller LA
    J Cardiovasc Dev Dis; 2019 Jan; 6(1):. PubMed ID: 30678229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluid dynamics in heart development: effects of hematocrit and trabeculation.
    Battista NA; Lane AN; Liu J; Miller LA
    Math Med Biol; 2018 Dec; 35(4):493-516. PubMed ID: 29161412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluid dynamics of ventricular filling in the embryonic heart.
    Miller LA
    Cell Biochem Biophys; 2011 Sep; 61(1):33-45. PubMed ID: 21336589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of tissue biomechanics in the formation and function of myocardial trabeculae in zebrafish embryos.
    Cairelli AG; Gendernalik A; Chan WX; Nguyen P; Vermot J; Lee J; Bark D; Yap CH
    J Physiol; 2024 Feb; 602(4):597-617. PubMed ID: 38345870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluid mechanics of the zebrafish embryonic heart trabeculation.
    Cairelli AG; Chow RW; Vermot J; Yap CH
    PLoS Comput Biol; 2022 Jun; 18(6):e1010142. PubMed ID: 35666714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow within models of the vertebrate embryonic heart.
    Santhanakrishnan A; Nguyen N; Cox JG; Miller LA
    J Theor Biol; 2009 Aug; 259(3):449-61. PubMed ID: 19410580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial and temporal variations in hemodynamic forces initiate cardiac trabeculation.
    Lee J; Vedula V; Baek KI; Chen J; Hsu JJ; Ding Y; Chang CC; Kang H; Small A; Fei P; Chuong CM; Li R; Demer L; Packard RRS; Marsden AL; Hsiai TK
    JCI Insight; 2018 Jul; 3(13):. PubMed ID: 29997298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method to quantify mechanobiologic forces during zebrafish cardiac development using 4-D light sheet imaging and computational modeling.
    Vedula V; Lee J; Xu H; Kuo CJ; Hsiai TK; Marsden AL
    PLoS Comput Biol; 2017 Oct; 13(10):e1005828. PubMed ID: 29084212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis.
    Hove JR; Köster RW; Forouhar AS; Acevedo-Bolton G; Fraser SE; Gharib M
    Nature; 2003 Jan; 421(6919):172-7. PubMed ID: 12520305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordinating cardiomyocyte interactions to direct ventricular chamber morphogenesis.
    Han P; Bloomekatz J; Ren J; Zhang R; Grinstein JD; Zhao L; Burns CG; Burns CE; Anderson RM; Chi NC
    Nature; 2016 Jun; 534(7609):700-4. PubMed ID: 27357797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluid dynamics of heart development.
    Santhanakrishnan A; Miller LA
    Cell Biochem Biophys; 2011 Sep; 61(1):1-22. PubMed ID: 21327946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of carotid artery geometry on the magnitude and distribution of wall shear stress gradients.
    Wells DR; Archie JP; Kleinstreuer C
    J Vasc Surg; 1996 Apr; 23(4):667-78. PubMed ID: 8627904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-sheet Fluorescence Microscopy to Capture 4-Dimensional Images of the Effects of Modulating Shear Stress on the Developing Zebrafish Heart.
    Messerschmidt V; Bailey Z; Baek KI; Bryant R; Li R; Hsiai TK; Lee J
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30148501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endothelial cell morphologic response to asymmetric stenosis hemodynamics: effects of spatial wall shear stress gradients.
    Rouleau L; Farcas M; Tardif JC; Mongrain R; Leask RL
    J Biomech Eng; 2010 Aug; 132(8):081013. PubMed ID: 20670062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental changes in the myocardial architecture of the chick.
    Sedmera D; Pexieder T; Hu N; Clark EB
    Anat Rec; 1997 Jul; 248(3):421-32. PubMed ID: 9214560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluid forces shape the embryonic heart: Insights from zebrafish.
    Sidhwani P; Yelon D
    Curr Top Dev Biol; 2019; 132():395-416. PubMed ID: 30797515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Modeling of Blood Flow Hemodynamics for Biomechanical Investigation of Cardiac Development and Disease.
    Salman HE; Yalcin HC
    J Cardiovasc Dev Dis; 2021 Jan; 8(2):. PubMed ID: 33572675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A non-dimensional parameter for classification of the flow in intracranial aneurysms. I. Simplified geometries.
    Asgharzadeh H; Borazjani I
    Phys Fluids (1994); 2019 Mar; 31(3):031904. PubMed ID: 30967744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 4-D Computational Modeling of Cardiac Outflow Tract Hemodynamics over Looping Developmental Stages in Chicken Embryos.
    Courchaine K; Gray MJ; Beel K; Thornburg K; Rugonyi S
    J Cardiovasc Dev Dis; 2019 Feb; 6(1):. PubMed ID: 30818869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blood flow through the embryonic heart outflow tract during cardiac looping in HH13-HH18 chicken embryos.
    Midgett M; Chivukula VK; Dorn C; Wallace S; Rugonyi S
    J R Soc Interface; 2015 Oct; 12(111):20150652. PubMed ID: 26468069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.