These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 30678229)

  • 21. Simultaneous imaging of blood flow dynamics and vascular remodelling during development.
    Ghaffari S; Leask RL; Jones EA
    Development; 2015 Dec; 142(23):4158-67. PubMed ID: 26443647
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Advanced blood flow assessment in Zebrafish via experimental digital particle image velocimetry and computational fluid dynamics modeling.
    Salman HE; Yalcin HC
    Micron; 2020 Mar; 130():102801. PubMed ID: 31864139
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aortic arch morphogenesis and flow modeling in the chick embryo.
    Wang Y; Dur O; Patrick MJ; Tinney JP; Tobita K; Keller BB; Pekkan K
    Ann Biomed Eng; 2009 Jun; 37(6):1069-81. PubMed ID: 19337838
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational design of a bypass graft that minimizes wall shear stress gradients in the region of the distal anastomosis.
    Lei M; Archie JP; Kleinstreuer C
    J Vasc Surg; 1997 Apr; 25(4):637-46. PubMed ID: 9129618
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution.
    Kabinejadian F; Ghista DN
    Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Trabeculae and intertrabecular spaces of the heart interventricular septum: anatomical structure and development].
    Iakimov AA
    Morfologiia; 2009; 135(2):83-90. PubMed ID: 19563181
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluating the roles of detailed endocardial structures on right ventricular haemodynamics by means of CFD simulations.
    Sacco F; Paun B; Lehmkuhl O; Iles TL; Iaizzo PA; Houzeaux G; Vázquez M; Butakoff C; Aguado-Sierra J
    Int J Numer Method Biomed Eng; 2018 Sep; 34(9):e3115. PubMed ID: 29892995
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Organ Dynamics and Fluid Dynamics of the HH25 Chick Embryonic Cardiac Ventricle as Revealed by a Novel 4D High-Frequency Ultrasound Imaging Technique and Computational Flow Simulations.
    Ho S; Tan GXY; Foo TJ; Phan-Thien N; Yap CH
    Ann Biomed Eng; 2017 Oct; 45(10):2309-2323. PubMed ID: 28744840
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anisotropic shear stress patterns predict the orientation of convergent tissue movements in the embryonic heart.
    Boselli F; Steed E; Freund JB; Vermot J
    Development; 2017 Dec; 144(23):4322-4327. PubMed ID: 29183943
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluid mechanics of blood flow in human fetal left ventricles based on patient-specific 4D ultrasound scans.
    Lai CQ; Lim GL; Jamil M; Mattar CN; Biswas A; Yap CH
    Biomech Model Mechanobiol; 2016 Oct; 15(5):1159-72. PubMed ID: 26676944
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Morphogenesis of myocardial trabeculae in the mouse embryo.
    Captur G; Wilson R; Bennett MF; Luxán G; Nasis A; de la Pompa JL; Moon JC; Mohun TJ
    J Anat; 2016 Aug; 229(2):314-25. PubMed ID: 27020702
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cardiac fluid dynamics anticipates heart adaptation.
    Pedrizzetti G; Martiniello AR; Bianchi V; D'Onofrio A; Caso P; Tonti G
    J Biomech; 2015 Jan; 48(2):388-91. PubMed ID: 25529139
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of a lattice Boltzmann-immersed boundary method for fluid-filament dynamics and flow sensing.
    O Connor J; Revell A; Mandal P; Day P
    J Biomech; 2016 Jul; 49(11):2143-2151. PubMed ID: 26718062
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hemodynamics analyses of arterial expansions with implications to thrombosis and restenosis.
    Hyun S; Kleinstreuer C; Archie JP
    Med Eng Phys; 2000 Jan; 22(1):13-27. PubMed ID: 10817945
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of temporal shear stress gradients during the onset phase of flow over a backward-facing step.
    Haidekker MA; White CR; Frangos JA
    J Biomech Eng; 2001 Oct; 123(5):455-63. PubMed ID: 11601731
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Live imaging and modeling for shear stress quantification in the embryonic zebrafish heart.
    Boselli F; Vermot J
    Methods; 2016 Feb; 94():129-34. PubMed ID: 26390811
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".
    Hewlin RL; Kizito JP
    Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hemodynamics in the Left Atrium and Its Effect on Ventricular Flow Patterns.
    Vedula V; George R; Younes L; Mittal R
    J Biomech Eng; 2015 Nov; 137(11):111003. PubMed ID: 26329022
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Altered mechanical state in the embryonic heart results in time-dependent decreases in cardiac function.
    Johnson B; Bark D; Van Herck I; Garrity D; Dasi LP
    Biomech Model Mechanobiol; 2015 Nov; 14(6):1379-89. PubMed ID: 25976479
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 4-Dimensional light-sheet microscopy to elucidate shear stress modulation of cardiac trabeculation.
    Lee J; Fei P; Packard RR; Kang H; Xu H; Baek KI; Jen N; Chen J; Yen H; Kuo CC; Chi NC; Ho CM; Li R; Hsiai TK
    J Clin Invest; 2016 May; 126(5):1679-90. PubMed ID: 27018592
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.