These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 3067828)

  • 1. The effects of methylmercury on the cytoskeleton of murine embryonal carcinoma cells.
    Wasteneys GO; Cadrin M; Reuhl KR; Brown DL
    Cell Biol Toxicol; 1988 Mar; 4(1):41-60. PubMed ID: 3067828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of methylmercury on retinoic acid-induced neuroectodermal derivatives of embryonal carcinoma cells.
    Cadrin M; Wasteneys GO; Jones-Villeneuve EM; Brown DL; Reuhl KR
    Cell Biol Toxicol; 1988 Mar; 4(1):61-80. PubMed ID: 3067829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selectivity of methyl mercury effects on cytoskeleton and mitotic progression in cultured cells.
    Sager PR
    Toxicol Appl Pharmacol; 1988 Jul; 94(3):473-86. PubMed ID: 3400096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of neurotoxicity related to selective disruption of microtubules and intermediate filaments.
    Sager PR; Matheson DW
    Toxicology; 1988 May; 49(2-3):479-92. PubMed ID: 3376145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of glutathione depletion on methyl mercury-induced microtubule disassembly in cultured embryonal carcinoma cells.
    Graff RD; Philbert MA; Lowndes HE; Reuhl KR
    Toxicol Appl Pharmacol; 1993 May; 120(1):20-8. PubMed ID: 8511779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of methylmercury on mitotic mouse glioma cells.
    Miura K; Suzuki K; Imura N
    Environ Res; 1978 Dec; 17(3):453-71. PubMed ID: 318529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of microtubule-associated protein (MAP) expression on methylmercury-induced microtubule disassembly.
    Hunter AM; Brown DL
    Toxicol Appl Pharmacol; 2000 Aug; 166(3):203-13. PubMed ID: 10906284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered sensitivity of posttranslationally modified microtubules to methylmercury in differentiating embryonal carcinoma-derived neurons.
    Graff RD; Falconer MM; Brown DL; Reuhl KR
    Toxicol Appl Pharmacol; 1997 Jun; 144(2):215-24. PubMed ID: 9194405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Association of microtubule-associated protein 2 (MAP 2) with microtubules and intermediate filaments in cultured brain cells.
    Bloom GS; Vallee RB
    J Cell Biol; 1983 Jun; 96(6):1523-31. PubMed ID: 6343400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cultured stem-cells from human testicular teratomas: the nature of human embryonal carcinoma, and its comparison with two types of yolk-sac carcinoma.
    Pera MF; Blasco Lafita MJ; Mills J
    Int J Cancer; 1987 Sep; 40(3):334-43. PubMed ID: 2442105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Centrosome separation: respective role of microtubules and actin filaments.
    Uzbekov R; Kireyev I; Prigent C
    Biol Cell; 2002 Sep; 94(4-5):275-88. PubMed ID: 12489696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and dynamics of cytoplasmic F-actin in higher plant endosperm cells during interphase, mitosis, and cytokinesis.
    Schmit AC; Lambert AM
    J Cell Biol; 1987 Nov; 105(5):2157-66. PubMed ID: 3680376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microtubule dynamics at the G2/M transition: abrupt breakdown of cytoplasmic microtubules at nuclear envelope breakdown and implications for spindle morphogenesis.
    Zhai Y; Kronebusch PJ; Simon PM; Borisy GG
    J Cell Biol; 1996 Oct; 135(1):201-14. PubMed ID: 8858174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of the tumor inhibitor IKP-104, a 4(1H)-pyridinone derivative, on cytoskeletal microtubules of cultured tumor cells.
    Mizuhashi F; Murata K; Kitagaki T; Tomita I
    Jpn J Cancer Res; 1991 Dec; 82(12):1442-7. PubMed ID: 1778768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of cytotoxicity of methylmercury. With special reference to microtubule disruption.
    Miura K; Imura N
    Biol Trace Elem Res; 1989; 21():313-6. PubMed ID: 2484606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microtubules are required for centrosome expansion and positioning while microfilaments are required for centrosome separation in sea urchin eggs during fertilization and mitosis.
    Schatten H; Walter M; Biessmann H; Schatten G
    Cell Motil Cytoskeleton; 1988; 11(4):248-59. PubMed ID: 3064924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of elevated intracellular magnesium on cytoskeletal integrity.
    Prescott AR; Comerford JG; Magrath R; Lamb NJ; Warn RM
    J Cell Sci; 1988 Mar; 89 ( Pt 3)():321-9. PubMed ID: 3198695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A scanning electron-microscopic study of the effects of methylmercury on the neuronal cytoskeleton.
    Trombetta LD; Kromidas L
    Toxicol Lett; 1992 May; 60(3):329-41. PubMed ID: 1595092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity of platelet microtubules to disassembly by methylmercury.
    Durham HD; Minotti S; Caporicci E; Chakrabarti S; Panisset JC
    J Toxicol Environ Health; 1996 May; 48(1):57-69. PubMed ID: 8637058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methylmercury, but not inorganic mercury, causes abnormality of centrosome integrity (multiple foci of gamma-tubulin), multipolar spindles and multinucleated cells without microtubule disruption in cultured Chinese hamster V79 cells.
    Ochi T
    Toxicology; 2002 Jun; 175(1-3):111-21. PubMed ID: 12049841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.