These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

612 related articles for article (PubMed ID: 30678550)

  • 41. Nanomedicine Strategies to Circumvent Intratumor Extracellular Matrix Barriers for Cancer Therapy.
    Xu X; Wu Y; Qian X; Wang Y; Wang J; Li J; Li Y; Zhang Z
    Adv Healthc Mater; 2022 Jan; 11(1):e2101428. PubMed ID: 34706400
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Smart Drug-Delivery Systems for Cancer Nanotherapy.
    Sanchez-Moreno P; Ortega-Vinuesa JL; Peula-Garcia JM; Marchal JA; Boulaiz H
    Curr Drug Targets; 2018 Feb; 19(4):339-359. PubMed ID: 27231107
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comprehensively priming the tumor microenvironment by cancer-associated fibroblast-targeted liposomes for combined therapy with cancer cell-targeted chemotherapeutic drug delivery system.
    Chen B; Dai W; Mei D; Liu T; Li S; He B; He B; Yuan L; Zhang H; Wang X; Zhang Q
    J Control Release; 2016 Nov; 241():68-80. PubMed ID: 27641831
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The past, present, and future of breast cancer models for nanomedicine development.
    Boix-Montesinos P; Soriano-Teruel PM; Armiñán A; Orzáez M; Vicent MJ
    Adv Drug Deliv Rev; 2021 Jun; 173():306-330. PubMed ID: 33798642
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nanomedicines for Pediatric Cancers.
    Rodríguez-Nogales C; González-Fernández Y; Aldaz A; Couvreur P; Blanco-Prieto MJ
    ACS Nano; 2018 Aug; 12(8):7482-7496. PubMed ID: 30071163
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Anticancer nanomedicines harnessing tumor microenvironmental components.
    Li Y; Chen Z; Gu L; Duan Z; Pan D; Xu Z; Gong Q; Li Y; Zhu H; Luo K
    Expert Opin Drug Deliv; 2022 Apr; 19(4):337-354. PubMed ID: 35244503
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nanoparticles for topical drug delivery: Potential for skin cancer treatment.
    Krishnan V; Mitragotri S
    Adv Drug Deliv Rev; 2020 Jan; 153():87-108. PubMed ID: 32497707
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nanodrug delivery systems: a promising technology for detection, diagnosis, and treatment of cancer.
    Babu A; Templeton AK; Munshi A; Ramesh R
    AAPS PharmSciTech; 2014 Jun; 15(3):709-21. PubMed ID: 24550101
    [TBL] [Abstract][Full Text] [Related]  

  • 49. PEGylation: a promising strategy to overcome challenges to cancer-targeted nanomedicines: a review of challenges to clinical transition and promising resolution.
    Hussain Z; Khan S; Imran M; Sohail M; Shah SWA; de Matas M
    Drug Deliv Transl Res; 2019 Jun; 9(3):721-734. PubMed ID: 30895453
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Insights into Active Targeting of Nanoparticles in Drug Delivery: Advances in Clinical Studies and Design Considerations for Cancer Nanomedicine.
    Pearce AK; O'Reilly RK
    Bioconjug Chem; 2019 Sep; 30(9):2300-2311. PubMed ID: 31441642
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Recent Advances in Targeted Tumor Chemotherapy Based on Smart Nanomedicines.
    Qin SY; Zhang AQ; Zhang XZ
    Small; 2018 Nov; 14(45):e1802417. PubMed ID: 30247806
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Copolymers of poly(lactic acid) and D-α-tocopheryl polyethylene glycol 1000 succinate-based nanomedicines: versatile multifunctional platforms for cancer diagnosis and therapy.
    Vijayakumar MR; Muthu MS; Singh S
    Expert Opin Drug Deliv; 2013 Apr; 10(4):529-43. PubMed ID: 23316695
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Designing Stimuli-Responsive Upconversion Nanoparticles that Exploit the Tumor Microenvironment.
    Ovais M; Mukherjee S; Pramanik A; Das D; Mukherjee A; Raza A; Chen C
    Adv Mater; 2020 Jun; 32(22):e2000055. PubMed ID: 32227413
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Emerging nanomedicines for early cancer detection and improved treatment: current perspective and future promise.
    Bharali DJ; Mousa SA
    Pharmacol Ther; 2010 Nov; 128(2):324-35. PubMed ID: 20705093
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The importance of co-delivery of nanoparticle-siRNA and anticancer agents in cancer therapy.
    Khelghati N; Soleimanpour Mokhtarvand J; Mir M; Alemi F; Asemi Z; Sadeghpour A; Maleki M; Samadi Kafil H; Jadidi-Niaragh F; Majidinia M; Yousefi B
    Chem Biol Drug Des; 2021 Apr; 97(4):997-1015. PubMed ID: 33458952
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics.
    Steichen SD; Caldorera-Moore M; Peppas NA
    Eur J Pharm Sci; 2013 Feb; 48(3):416-27. PubMed ID: 23262059
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular and nanoengineering approaches towards activatable cancer immunotherapy.
    Zhang C; Pu K
    Chem Soc Rev; 2020 Jul; 49(13):4234-4253. PubMed ID: 32452475
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Regulating glucose metabolism using nanomedicines for cancer therapy.
    Tang M; Ren X; Fu C; Ding M; Meng X
    J Mater Chem B; 2021 Jul; 9(29):5749-5764. PubMed ID: 34196332
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Overcoming tumor microenvironment obstacles: Current approaches for boosting nanodrug delivery.
    Wang X; Zhang H; Chen X; Wu C; Ding K; Sun G; Luo Y; Xiang D
    Acta Biomater; 2023 Aug; 166():42-68. PubMed ID: 37257574
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nanoparticle-Induced Complement Activation: Implications for Cancer Nanomedicine.
    La-Beck NM; Islam MR; Markiewski MM
    Front Immunol; 2020; 11():603039. PubMed ID: 33488603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.