BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 30678565)

  • 21. Emergence of blueberry maggot flies (Diptera: tephritidae) from mulches and soil at various depths.
    Renkema JM; Lynch DH; Cutler GC; Mackenzie K; Walde SJ
    Environ Entomol; 2012 Apr; 41(2):370-6. PubMed ID: 22507011
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Leaf and Flower Blight Caused by Monilinia vaccinii-corymbosi on Lowbush Blueberry: Effects on Yield and Relationship to Bud Phenology.
    Penman LN; Annis SL
    Phytopathology; 2005 Oct; 95(10):1174-82. PubMed ID: 18943470
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome sequence of Monilinia vaccinii-corymbosi sheds light on mummy berry disease infection of blueberry and mating type.
    Yow AG; Zhang Y; Bansal K; Eacker SM; Sullivan S; Liachko I; Cubeta MA; Rollins JA; Ashrafi H
    G3 (Bethesda); 2021 Feb; 11(2):. PubMed ID: 33598705
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A New TaqMan Real-Time PCR Assay for Detecting the Blueberry Pathogen
    Dharmaraj K; Andersen MT; Alexander BJR; Toome-Heller M
    Plant Dis; 2022 Jul; 106(7):1826-1831. PubMed ID: 35077233
    [No Abstract]   [Full Text] [Related]  

  • 25. Elucidation of the molecular responses during the primary infection of wild blueberry phenotypes with Monilinia vaccinii-corymbosi under field conditions.
    Jose S; Abbey J; Jaakola L; Percival D
    BMC Plant Biol; 2021 Oct; 21(1):493. PubMed ID: 34706657
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sequential Sampling to Assess the Incidence of Infection by Monilinia vaccinii-corymbosi in Mechanically Harvested Rabbiteye Blueberry Fruit.
    Copes WE; Scherm H; Ware GO
    Phytopathology; 2001 Apr; 91(4):348-53. PubMed ID: 18943846
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gradients of Primary and Secondary Infection by Monilinia vaccinii-corymbosi from Point Sources of Ascospores and Conidia.
    Cox KD; Scherm H
    Plant Dis; 2001 Sep; 85(9):955-959. PubMed ID: 30823109
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Association of Cellulytic Enzyme Activities in Eucalyptus Mulches with Biological Control of Phytophthora cinnamomi.
    Downer AJ; Menge JA; Pond E
    Phytopathology; 2001 Sep; 91(9):847-55. PubMed ID: 18944230
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine: mitigation by hydraulic redistribution.
    Domec JC; Warren JM; Meinzer FC; Brooks JR; Coulombe R
    Oecologia; 2004 Sep; 141(1):7-16. PubMed ID: 15338263
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wheat and Cereal Rye Inter-Row Living Mulches Interfere with Early Season Weeds in Soybean.
    Geddes CM; Gulden RH
    Plants (Basel); 2021 Oct; 10(11):. PubMed ID: 34834640
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Erratum: Predicting Ascospore Release of Monilinia vaccinii-corymbosi of Blueberry with Machine Learning.
    Phytopathology; 2018 Jan; 108(1):156. PubMed ID: 29267151
    [No Abstract]   [Full Text] [Related]  

  • 32. Interaction of Lumbricus terrestris with macroscopic polyethylene and biodegradable plastic mulch.
    Zhang L; Sintim HY; Bary AI; Hayes DG; Wadsworth LC; Anunciado MB; Flury M
    Sci Total Environ; 2018 Sep; 635():1600-1608. PubMed ID: 29678255
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deterioration pattern of six biodegradable, potentially low-environmental impact mulches in field conditions.
    Moreno MM; González-Mora S; Villena J; Campos JA; Moreno C
    J Environ Manage; 2017 Sep; 200():490-501. PubMed ID: 28622652
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A deep multi-task learning approach to identifying mummy berry infection sites, the disease stage, and severity.
    Qu H; Zheng C; Ji H; Huang R; Wei D; Annis S; Drummond F
    Front Plant Sci; 2024; 15():1340884. PubMed ID: 38606063
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Native soil fungi associated with compostable plastics in three contrasting agricultural settings.
    Moore-Kucera J; Cox SB; Peyron M; Bailes G; Kinloch K; Karich K; Miles C; Inglis DA; Brodhagen M
    Appl Microbiol Biotechnol; 2014; 98(14):6467-85. PubMed ID: 24797311
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Soil nitrate nitrogen dynamics after biosolids application in a tobosagrass desert grassland.
    Jurado-Guerra P; Wester DB; Fish EB
    J Environ Qual; 2006; 35(2):641-50. PubMed ID: 16510709
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ground and rove beetles (Coleoptera: Carabidae and Staphylinidae) are affected by mulches and weeds in highbush blueberries.
    Renkema JM; Lynch DH; Cutler GC; Mackenzie K; Walde SJ
    Environ Entomol; 2012 Oct; 41(5):1097-106. PubMed ID: 23068165
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Variation in water potential, hydraulic characteristics and water source use in montane Douglas-fir and lodgepole pine trees in southwestern Alberta and consequences for seasonal changes in photosynthetic capacity.
    Andrews SF; Flanagan LB; Sharp EJ; Cai T
    Tree Physiol; 2012 Feb; 32(2):146-60. PubMed ID: 22318220
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcription through the eye of a needle: daily and annual cyclic gene expression variation in Douglas-fir needles.
    Cronn R; Dolan PC; Jogdeo S; Wegrzyn JL; Neale DB; St Clair JB; Denver DR
    BMC Genomics; 2017 Jul; 18(1):558. PubMed ID: 28738815
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of different mulch materials on winter wheat production in desalinized soil in Heilonggang region of North China.
    Yang YM; Liu XJ; Li WQ; Li CZ
    J Zhejiang Univ Sci B; 2006 Nov; 7(11):858-67. PubMed ID: 17048298
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.