BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 30678647)

  • 41. Inhibition of PI3K/Akt/mTOR overcomes cisplatin resistance in the triple negative breast cancer cell line HCC38.
    Gohr K; Hamacher A; Engelke LH; Kassack MU
    BMC Cancer; 2017 Nov; 17(1):711. PubMed ID: 29100507
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Targeting heat-shock protein 90 with ganetespib for molecularly targeted therapy of gastric cancer.
    Liu H; Lu J; Hua Y; Zhang P; Liang Z; Ruan L; Lian C; Shi H; Chen K; Tu Z
    Cell Death Dis; 2015 Jan; 6(1):e1595. PubMed ID: 25590805
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Clinical Identification of Dysregulated Circulating microRNAs and Their Implication in Drug Response in Triple Negative Breast Cancer (TNBC) by Target Gene Network and Meta-Analysis.
    Qattan A; Al-Tweigeri T; Alkhayal W; Suleman K; Tulbah A; Amer S
    Genes (Basel); 2021 Apr; 12(4):. PubMed ID: 33918859
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Histone Deacetylase Inhibitor Enhances the Efficacy of MEK Inhibitor through NOXA-Mediated MCL1 Degradation in Triple-Negative and Inflammatory Breast Cancer.
    Torres-Adorno AM; Lee J; Kogawa T; Ordentlich P; Tripathy D; Lim B; Ueno NT
    Clin Cancer Res; 2017 Aug; 23(16):4780-4792. PubMed ID: 28465444
    [No Abstract]   [Full Text] [Related]  

  • 45. Chemotherapy-driven increases in the CDKN1A/PTN/PTPRZ1 axis promote chemoresistance by activating the NF-κB pathway in breast cancer cells.
    Huang P; Ouyang DJ; Chang S; Li MY; Li L; Li QY; Zeng R; Zou QY; Su J; Zhao P; Pei L; Yi WJ
    Cell Commun Signal; 2018 Nov; 16(1):92. PubMed ID: 30497491
    [TBL] [Abstract][Full Text] [Related]  

  • 46. HSP90 identified by a proteomic approach as druggable target to reverse platinum resistance in ovarian cancer.
    Lombardi R; Sonego M; Pucci B; Addi L; Iannelli F; Capone F; Alfano L; Roca MS; Milone MR; Moccia T; Costa A; Di Gennaro E; Bruzzese F; Baldassarre G; Budillon A
    Mol Oncol; 2021 Apr; 15(4):1005-1023. PubMed ID: 33331136
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Targeting HSP90-HDAC6 Regulating Network Implicates Precision Treatment of Breast Cancer.
    Yu S; Cai X; Wu C; Liu Y; Zhang J; Gong X; Wang X; Wu X; Zhu T; Mo L; Gu J; Yu Z; Chen J; Thiery JP; Chai R; Chen L
    Int J Biol Sci; 2017; 13(4):505-517. PubMed ID: 28529458
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An activated JAK/STAT3 pathway and CD45 expression are associated with sensitivity to Hsp90 inhibitors in multiple myeloma.
    Lin H; Kolosenko I; Björklund AC; Protsyuk D; Österborg A; Grandér D; Tamm KP
    Exp Cell Res; 2013 Mar; 319(5):600-11. PubMed ID: 23246572
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High-throughput screens identify HSP90 inhibitors as potent therapeutics that target inter-related growth and survival pathways in advanced prostate cancer.
    Jansson KH; Tucker JB; Stahl LE; Simmons JK; Fuller C; Beshiri ML; Agarwal S; Fang L; Hynes PG; Alilin AN; Lake R; Abbey YC; Cawley J; Tice CM; Yin J; McKnight C; Klummp-Thomas C; Zhang X; Guha R; Hoover S; Simpson RM; Nguyen HM; Corey E; Thomas CJ; Proia DA; Kelly K
    Sci Rep; 2018 Nov; 8(1):17239. PubMed ID: 30467317
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ganetespib induces G2/M cell cycle arrest and apoptosis in gastric cancer cells through targeting of receptor tyrosine kinase signaling.
    Lee H; Saini N; Parris AB; Zhao M; Yang X
    Int J Oncol; 2017 Sep; 51(3):967-974. PubMed ID: 28713919
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inhibition of HSP90 overcomes melphalan resistance through downregulation of Src in multiple myeloma cells.
    Tabata M; Tsubaki M; Takeda T; Tateishi K; Maekawa S; Tsurushima K; Imano M; Satou T; Ishizaka T; Nishida S
    Clin Exp Med; 2020 Feb; 20(1):63-71. PubMed ID: 31650359
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ganetespib in Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitor-resistant Non-small Cell Lung Cancer.
    Kurihara E; Shien K; Torigoe H; Takeda T; Takahashi Y; Ogoshi Y; Yoshioka T; Namba K; Sato H; Suzawa K; Yamamoto H; Soh J; Okazaki M; Shien T; Tomida S; Toyooka S
    Anticancer Res; 2019 Apr; 39(4):1767-1775. PubMed ID: 30952716
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High expression of STAT3 within the tumour-associated stroma predicts poor outcome in breast cancer patients.
    Morrow E; Pennel K; Hatthakarnkul P; Leslie H; Mallon E; Andersen D; Jamieson N; McMillan D; Roseweir A; Edwards J
    Cancer Med; 2023 Jun; 12(12):13225-13240. PubMed ID: 37199043
    [TBL] [Abstract][Full Text] [Related]  

  • 54. RNA-binding protein NONO contributes to cancer cell growth and confers drug resistance as a theranostic target in TNBC.
    Kim SJ; Ju JS; Kang MH; Eun JW; Kim YH; Raninga PV; Khanna KK; Győrffy B; Pack CG; Han HD; Lee HJ; Gong G; Shin Y; Mills GB; Eyun SI; Park YY
    Theranostics; 2020; 10(18):7974-7992. PubMed ID: 32724453
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synergistic anti-proliferative activity of JQ1 and GSK2801 in triple-negative breast cancer.
    Yellapu NK; Ly T; Sardiu ME; Pei D; Welch DR; Thompson JA; Koestler DC
    BMC Cancer; 2022 Jun; 22(1):627. PubMed ID: 35672711
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metformin overcomes resistance to cisplatin in triple-negative breast cancer (TNBC) cells by targeting RAD51.
    Lee JO; Kang MJ; Byun WS; Kim SA; Seo IH; Han JA; Moon JW; Kim JH; Kim SJ; Lee EJ; In Park S; Park SH; Kim HS
    Breast Cancer Res; 2019 Oct; 21(1):115. PubMed ID: 31640742
    [TBL] [Abstract][Full Text] [Related]  

  • 57. New Insights in Gene Expression Alteration as Effect of Paclitaxel Drug Resistance in Triple Negative Breast Cancer Cells.
    Jurj A; Pop LA; Zanoaga O; Ciocan-Cârtiţă CA; Cojocneanu R; Moldovan C; Raduly L; Pop-Bica C; Trif M; Irimie A; Berindan-Neagoe I; Braicu C
    Cell Physiol Biochem; 2020 Jul; 54(4):648-664. PubMed ID: 32619350
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of a stemness-related gene panel associated with BET inhibition in triple negative breast cancer.
    Serrano-Oviedo L; Nuncia-Cantarero M; Morcillo-Garcia S; Nieto-Jimenez C; Burgos M; Corrales-Sanchez V; Perez-Peña J; Győrffy B; Ocaña A; Galán-Moya EM
    Cell Oncol (Dordr); 2020 Jun; 43(3):431-444. PubMed ID: 32166583
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Heterodimeric JAK-STAT activation as a mechanism of persistence to JAK2 inhibitor therapy.
    Koppikar P; Bhagwat N; Kilpivaara O; Manshouri T; Adli M; Hricik T; Liu F; Saunders LM; Mullally A; Abdel-Wahab O; Leung L; Weinstein A; Marubayashi S; Goel A; Gönen M; Estrov Z; Ebert BL; Chiosis G; Nimer SD; Bernstein BE; Verstovsek S; Levine RL
    Nature; 2012 Sep; 489(7414):155-9. PubMed ID: 22820254
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synthetic Lethal and Resistance Interactions with BET Bromodomain Inhibitors in Triple-Negative Breast Cancer.
    Shu S; Wu HJ; Ge JY; Zeid R; Harris IS; Jovanović B; Murphy K; Wang B; Qiu X; Endress JE; Reyes J; Lim K; Font-Tello A; Syamala S; Xiao T; Reddy Chilamakuri CS; Papachristou EK; D'Santos C; Anand J; Hinohara K; Li W; McDonald TO; Luoma A; Modiste RJ; Nguyen QD; Michel B; Cejas P; Kadoch C; Jaffe JD; Wucherpfennig KW; Qi J; Liu XS; Long H; Brown M; Carroll JS; Brugge JS; Bradner J; Michor F; Polyak K
    Mol Cell; 2020 Jun; 78(6):1096-1113.e8. PubMed ID: 32416067
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.