BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 30678677)

  • 1. Genomic sequencing, genome-scale metabolic network reconstruction, and in silico flux analysis of the grape endophytic fungus Alternaria sp. MG1.
    Lu Y; Ye C; Che J; Xu X; Shao D; Jiang C; Liu Y; Shi J
    Microb Cell Fact; 2019 Jan; 18(1):13. PubMed ID: 30678677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternaria sp. MG1, a resveratrol-producing fungus: isolation, identification, and optimal cultivation conditions for resveratrol production.
    Shi J; Zeng Q; Liu Y; Pan Z
    Appl Microbiol Biotechnol; 2012 Jul; 95(2):369-79. PubMed ID: 22526800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential application of CHS and 4CL genes from grape endophytic fungus in production of naringenin and resveratrol and the improvement of polyphenol profiles and flavour of wine.
    Lu Y; Song Y; Zhu J; Xu X; Pang B; Jin H; Jiang C; Liu Y; Shi J
    Food Chem; 2021 Jun; 347():128972. PubMed ID: 33453581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolomics Reveals the Response of the Phenylpropanoid Biosynthesis Pathway to Starvation Treatment in the Grape Endophyte
    Lu Y; Che J; Xu X; Pang B; Zhao X; Liu Y; Shi J
    J Agric Food Chem; 2020 Jan; 68(4):1126-1135. PubMed ID: 31891261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome Analysis Reveals the Genetic Basis of the Resveratrol Biosynthesis Pathway in an Endophytic Fungus (Alternaria sp. MG1) Isolated from Vitis vinifera.
    Che J; Shi J; Gao Z; Zhang Y
    Front Microbiol; 2016; 7():1257. PubMed ID: 27588016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioconversion of resveratrol using resting cells of non-genetically modified Alternaria sp.
    Zhang J; Shi J; Liu Y
    Biotechnol Appl Biochem; 2013; 60(2):236-43. PubMed ID: 23586428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of reference genes for normalization of gene expression by qRT-PCR in a resveratrol-producing entophytic fungus (Alternaria sp. MG1).
    Che JX; Shi JL; Lu Y; Liu YL
    AMB Express; 2016 Dec; 6(1):106. PubMed ID: 27826948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrates and enzyme activities related to biotransformation of resveratrol from phenylalanine by Alternaria sp. MG1.
    Zhang J; Shi J; Liu Y
    Appl Microbiol Biotechnol; 2013 Dec; 97(23):9941-54. PubMed ID: 24068334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A New Approach to Produce Resveratrol by Enzymatic Bioconversion.
    Che J; Shi J; Gao Z; Zhang Y
    J Microbiol Biotechnol; 2016 Aug; 26(8):1348-57. PubMed ID: 27116990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of the Biosynthesis of Resveratrol in Endophytic Fungus (
    Lu Y; Shi J; Zhao X; Song Y; Qin Y; Liu Y
    Front Microbiol; 2021; 12():770734. PubMed ID: 34745078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network.
    Lee J; Yun H; Feist AM; Palsson BØ; Lee SY
    Appl Microbiol Biotechnol; 2008 Oct; 80(5):849-62. PubMed ID: 18758767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole-Genome Sequence Analysis of an Endophytic Fungus
    Tao J; Bai X; Zeng M; Li M; Hu Z; Hua Y; Zhang H
    Microorganisms; 2022 Sep; 10(9):. PubMed ID: 36144391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The study of metabolites from fermentation culture of Alternaria oxytropis.
    Song R; Wang J; Sun L; Zhang Y; Ren Z; Zhao B; Lu H
    BMC Microbiol; 2019 Feb; 19(1):35. PubMed ID: 30744547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-scale metabolic modeling and in silico analysis of lipid accumulating yeast Candida tropicalis for dicarboxylic acid production.
    Mishra P; Park GY; Lakshmanan M; Lee HS; Lee H; Chang MW; Ching CB; Ahn J; Lee DY
    Biotechnol Bioeng; 2016 Sep; 113(9):1993-2004. PubMed ID: 26915092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth-rate dependency of de novo resveratrol production in chemostat cultures of an engineered Saccharomyces cerevisiae strain.
    Vos T; de la Torre Cortés P; van Gulik WM; Pronk JT; Daran-Lapujade P
    Microb Cell Fact; 2015 Sep; 14():133. PubMed ID: 26369953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-scale analysis of Mannheimia succiniciproducens metabolism.
    Kim TY; Kim HU; Park JM; Song H; Kim JS; Lee SY
    Biotechnol Bioeng; 2007 Jul; 97(4):657-71. PubMed ID: 17405177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Influence of the Grapevine Bacterial and Fungal Endophytes on Biomass Accumulation and Stilbene Production by the In Vitro Cultivated Cells of
    Aleynova OA; Suprun AR; Nityagovsky NN; Dubrovina AS; Kiselev KV
    Plants (Basel); 2021 Jun; 10(7):. PubMed ID: 34201750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic network model guided engineering ethylmalonyl-CoA pathway to improve ascomycin production in Streptomyces hygroscopicus var. ascomyceticus.
    Wang J; Wang C; Song K; Wen J
    Microb Cell Fact; 2017 Oct; 16(1):169. PubMed ID: 28974216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Untargeted metabolomic analyses support the main phylogenetic groups of the common plant-associated Alternaria fungi isolated from grapevine (Vitis vinifera).
    Molnár A; Knapp DG; Lovas M; Tóth G; Boldizsár I; Váczy KZ; Kovács GM
    Sci Rep; 2023 Nov; 13(1):19298. PubMed ID: 37935846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved annotation through genome-scale metabolic modeling of Aspergillus oryzae.
    Vongsangnak W; Olsen P; Hansen K; Krogsgaard S; Nielsen J
    BMC Genomics; 2008 May; 9():245. PubMed ID: 18500999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.