BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 30678900)

  • 1. Effects of Mo contents on the microstructure, properties and cytocompatibility of the microwave sintered porous Ti-Mo alloys.
    Xu JL; Tao SC; Bao LZ; Luo JM; Zheng YF
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():156-165. PubMed ID: 30678900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and properties of biomedical porous titanium alloys by gelcasting.
    Yang D; Shao H; Guo Z; Lin T; Fan L
    Biomed Mater; 2011 Aug; 6(4):045010. PubMed ID: 21747152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructure, mechanical properties and superelasticity of biomedical porous NiTi alloy prepared by microwave sintering.
    Xu JL; Bao LZ; Liu AH; Jin XJ; Tong YX; Luo JM; Zhong ZC; Zheng YF
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():387-93. PubMed ID: 25492002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructure, mechanical properties and cytocompatibility of stable beta Ti-Mo-Ta sintered alloys.
    Delvat E; Gordin DM; Gloriant T; Duval JL; Nagel MD
    J Mech Behav Biomed Mater; 2008 Oct; 1(4):345-51. PubMed ID: 19627799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of pore size and porosity on cytocompatibility and osteogenic differentiation of porous titanium.
    Yao YT; Yang Y; Ye Q; Cao SS; Zhang XP; Zhao K; Jian Y
    J Mater Sci Mater Med; 2021 Jun; 32(6):72. PubMed ID: 34125310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and properties of porous Ti-10Mo alloy by selective laser sintering.
    Xie F; He X; Lu X; Cao S; Qu X
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1085-90. PubMed ID: 23827546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase composition, microstructure, and mechanical properties of porous Ti-Nb-Zr alloys prepared by a two-step foaming powder metallurgy method.
    Rao X; Chu CL; Zheng YY
    J Mech Behav Biomed Mater; 2014 Jun; 34():27-36. PubMed ID: 24556322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocompatibility of new low-cost (α + β)-type Ti-Mo-Fe alloys for long-term implantation.
    Abdelrhman Y; Gepreel MA; Kobayashi S; Okano S; Okamoto T
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():552-562. PubMed ID: 30889729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Mo and space holder content on microstructure, mechanical and corrosion properties in Ti6AlxMo based alloy for bone implant.
    Gupta J; Ghosh S; Aravindan S
    Mater Sci Eng C Mater Biol Appl; 2021 Apr; 123():111962. PubMed ID: 33812590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and properties of cast binary Ti-Mo alloys.
    Ho WF; Ju CP; Lin JH
    Biomaterials; 1999 Nov; 20(22):2115-22. PubMed ID: 10555079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porous TiNbZr alloy scaffolds for biomedical applications.
    Wang X; Li Y; Xiong J; Hodgson PD; Wen C
    Acta Biomater; 2009 Nov; 5(9):3616-24. PubMed ID: 19505597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening on binary Zr-1X (X = Ti, Nb, Mo, Cu, Au, Pd, Ag, Ru, Hf and Bi) alloys with good in vitro cytocompatibility and magnetic resonance imaging compatibility.
    Zhou FY; Qiu KJ; Li HF; Huang T; Wang BL; Li L; Zheng YF
    Acta Biomater; 2013 Dec; 9(12):9578-87. PubMed ID: 23928334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstructure, mechanical property, corrosion behavior, and in vitro biocompatibility of Zr-Mo alloys.
    Zhou FY; Wang BL; Qiu KJ; Li L; Lin JP; Li HF; Zheng YF
    J Biomed Mater Res B Appl Biomater; 2013 Feb; 101(2):237-46. PubMed ID: 23143798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical properties, in vitro corrosion resistance and biocompatibility of metal injection molded Ti-12Mo alloy for dental applications.
    Xu W; Lu X; Wang LN; Shi ZM; Lv SM; Qian M; Qu XH
    J Mech Behav Biomed Mater; 2018 Dec; 88():534-547. PubMed ID: 30223215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical, corrosion, nanotribological, and biocompatibility properties of equal channel angular pressed Ti-28Nb-35.4Zr alloys for biomedical applications.
    Munir K; Lin J; Wright PFA; Ozan S; Li Y; Wen C
    Acta Biomater; 2022 Sep; 149():387-398. PubMed ID: 35817341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical and electrochemical characterisation of new Ti-Mo-Nb-Zr alloys for biomedical applications.
    Nnamchi PS; Obayi CS; Todd I; Rainforth MW
    J Mech Behav Biomed Mater; 2016 Jul; 60():68-77. PubMed ID: 26773649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical properties and electrochemical behavior of porous Ti-Nb biomaterials.
    Yılmaz E; Gökçe A; Findik F; Gulsoy HO; İyibilgin O
    J Mech Behav Biomed Mater; 2018 Nov; 87():59-67. PubMed ID: 30041140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical and Biological Properties of a Biodegradable Mg-Zn-Ca Porous Alloy.
    Zhang YQ; Li Y; Liu H; Bai J; Bao NR; Zhang Y; He P; Zhao JN; Tao L; Xue F; Zhou GX; Fan GT
    Orthop Surg; 2018 May; 10(2):160-168. PubMed ID: 29767463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocompatibility and osteoconduction of active porous calcium-phosphate films on a novel Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy.
    Yu S; Yu Z; Wang G; Han J; Ma X; Dargusch MS
    Colloids Surf B Biointerfaces; 2011 Jul; 85(2):103-15. PubMed ID: 21439798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.