These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 30678915)

  • 1. Assessment of the usefulness of bacterial cellulose produced by Gluconacetobacter xylinus E
    Kołaczkowska M; Siondalski P; Kowalik MM; Pęksa R; Długa A; Zając W; Dederko P; Kołodziejska I; Malinowska-Pańczyk E; Sinkiewicz I; Staroszczyk H; Śliwińska A; Stanisławska A; Szkodo M; Pałczyńska P; Jabłoński G; Borman A; Wilczek P
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():302-312. PubMed ID: 30678915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial nanocellulose as a new patch material for closure of ventricular septal defects in a pig model.
    Lang N; Merkel E; Fuchs F; Schumann D; Klemm D; Kramer F; Mayer-Wagner S; Schroeder C; Freudenthal F; Netz H; Kozlik-Feldmann R; Sigler M
    Eur J Cardiothorac Surg; 2015 Jun; 47(6):1013-21. PubMed ID: 25064053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of dehydration/rehydration of bacterial nanocellulose on its tensile strength and physicochemical properties.
    Stanisławska A; Staroszczyk H; Szkodo M
    Carbohydr Polym; 2020 May; 236():116023. PubMed ID: 32172842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration.
    Martínez Ávila H; Schwarz S; Feldmann EM; Mantas A; von Bomhard A; Gatenholm P; Rotter N
    Appl Microbiol Biotechnol; 2014 Sep; 98(17):7423-35. PubMed ID: 24866945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants.
    Ahrem H; Pretzel D; Endres M; Conrad D; Courseau J; Müller H; Jaeger R; Kaps C; Klemm DO; Kinne RW
    Acta Biomater; 2014 Mar; 10(3):1341-53. PubMed ID: 24334147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete genome sequence of Gluconacetobacter xylinus E25 strain--valuable and effective producer of bacterial nanocellulose.
    Kubiak K; Kurzawa M; Jędrzejczak-Krzepkowska M; Ludwicka K; Krawczyk M; Migdalski A; Kacprzak MM; Loska D; Krystynowicz A; Bielecki S
    J Biotechnol; 2014 Apr; 176():18-9. PubMed ID: 24556328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement.
    Nimeskern L; Martínez Ávila H; Sundberg J; Gatenholm P; Müller R; Stok KS
    J Mech Behav Biomed Mater; 2013 Jun; 22():12-21. PubMed ID: 23611922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tolerance of the nanocellulose-producing bacterium Gluconacetobacter xylinus to lignocellulose-derived acids and aldehydes.
    Zhang S; Winestrand S; Chen L; Li D; Jönsson LJ; Hong F
    J Agric Food Chem; 2014 Oct; 62(40):9792-9. PubMed ID: 25186182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ biosynthesis of bacterial nanocellulose-CaCO3 hybrid bionanocomposite: One-step process.
    Mohammadkazemi F; Faria M; Cordeiro N
    Mater Sci Eng C Mater Biol Appl; 2016 Aug; 65():393-9. PubMed ID: 27157766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of a Functionalized Magnetic Bacterial Nanocellulose with Iron Oxide Nanoparticles.
    Arias SL; Shetty AR; Senpan A; Echeverry-Rendón M; Reece LM; Allain JP
    J Vis Exp; 2016 May; (111):. PubMed ID: 27285589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D culturing and differentiation of SH-SY5Y neuroblastoma cells on bacterial nanocellulose scaffolds.
    Innala M; Riebe I; Kuzmenko V; Sundberg J; Gatenholm P; Hanse E; Johannesson S
    Artif Cells Nanomed Biotechnol; 2014 Oct; 42(5):302-8. PubMed ID: 23895194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of bacterial nanocellulose-based uniform wound dressing for large area skin transplantation.
    Fu L; Zhou P; Zhang S; Yang G
    Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2995-3000. PubMed ID: 23623124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ synthesis of photocatalytically active hybrids consisting of bacterial nanocellulose and anatase nanoparticles.
    Wesarg F; Schlott F; Grabow J; Kurland HD; Heßler N; Kralisch D; Müller FA
    Langmuir; 2012 Sep; 28(37):13518-25. PubMed ID: 22925063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus.
    Keshk SM
    Carbohydr Polym; 2014 Jan; 99():98-100. PubMed ID: 24274484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellulose produced by Gluconacetobacter xylinus strains ATCC 53524 and ATCC 23768: Pellicle formation, post-synthesis aggregation and fiber density.
    Lee CM; Gu J; Kafle K; Catchmark J; Kim SH
    Carbohydr Polym; 2015 Nov; 133():270-6. PubMed ID: 26344281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production and characterization of Komagataeibacter xylinus SGP8 nanocellulose and its calcite based composite for removal of Cd ions.
    Bhattacharya A; Sadaf A; Dubey S; Singh RP; Khare SK
    Environ Sci Pollut Res Int; 2021 Sep; 28(34):46423-46430. PubMed ID: 32335838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. White biotechnology for cellulose manufacturing--the HoLiR concept.
    Kralisch D; Hessler N; Klemm D; Erdmann R; Schmidt W
    Biotechnol Bioeng; 2010 Mar; 105(4):740-7. PubMed ID: 19816981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of nanocellulose-producing bacterial strains in static and agitated cultures with different starting pH.
    Chen G; Wu G; Chen L; Wang W; Hong FF; Jönsson LJ
    Carbohydr Polym; 2019 Jul; 215():280-288. PubMed ID: 30981355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A uniaxially oriented nanofibrous cellulose scaffold from pellicles produced by Gluconacetobacter xylinus in dissolved oxygen culture.
    Nagashima A; Tsuji T; Kondo T
    Carbohydr Polym; 2016 Jan; 135():215-24. PubMed ID: 26453871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo.
    Martínez Ávila H; Feldmann EM; Pleumeekers MM; Nimeskern L; Kuo W; de Jong WC; Schwarz S; Müller R; Hendriks J; Rotter N; van Osch GJ; Stok KS; Gatenholm P
    Biomaterials; 2015 Mar; 44():122-33. PubMed ID: 25617132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.