These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 30678923)
1. Impact of simulated biological aging on physicochemical and biocompatibility properties of cyclic olefin copolymers. Bernard M; Jubeli E; Bakar J; Saunier J; Yagoubi N Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():377-387. PubMed ID: 30678923 [TBL] [Abstract][Full Text] [Related]
2. Biocompatibility assessment of cyclic olefin copolymers: Impact of two additives on cytotoxicity, oxidative stress, inflammatory reactions, and hemocompatibility. Bernard M; Jubeli E; Bakar J; Tortolano L; Saunier J; Yagoubi N J Biomed Mater Res A; 2017 Dec; 105(12):3333-3349. PubMed ID: 28875577 [TBL] [Abstract][Full Text] [Related]
3. Improving assay feasibility and biocompatibility of 3D cyclic olefin copolymer microwells by superhydrophilic modification via ultrasonic spray deposition of polyvinyl alcohol. Jagannath A; Yu M; Li J; Zhang N; Gilchrist MD Biomater Adv; 2024 Oct; 163():213934. PubMed ID: 38954877 [TBL] [Abstract][Full Text] [Related]
4. Surface modification of cyclic olefin copolymers for osteochondral defect repair can increase pro-destructive potential of human chondrocytes in vitro. Polanská M; Hulejová H; Petrtýl M; Bastl Z; Spirovová I; Krulis Z; Horák Z; Veigl D; Senolt L Physiol Res; 2010; 59(2):247-253. PubMed ID: 19537937 [TBL] [Abstract][Full Text] [Related]
5. Exudation of additives to the surface of medical devices: impact on biocompatibility in the case of polyurethane used in implantable catheters. Nouman M; Jubeli E; Saunier J; Yagoubi N J Biomed Mater Res A; 2016 Dec; 104(12):2954-2967. PubMed ID: 27448986 [TBL] [Abstract][Full Text] [Related]
6. Cyclic olefin copolymer (COC) as a promising biomaterial for affecting bacterial colonization: investigation on Vibrio campbellii. Cesaria M; Calcagnile M; Arima V; Bianco M; Alifano P; Cataldo R Int J Biol Macromol; 2024 Jun; 271(Pt 1):132550. PubMed ID: 38782326 [TBL] [Abstract][Full Text] [Related]
7. Tacky cyclic olefin copolymer: a biocompatible bonding technique for the fabrication of microfluidic channels in COC. Keller N; Nargang TM; Runck M; Kotz F; Striegel A; Sachsenheimer K; Klemm D; Länge K; Worgull M; Richter C; Helmer D; Rapp BE Lab Chip; 2016 Apr; 16(9):1561-4. PubMed ID: 27040493 [TBL] [Abstract][Full Text] [Related]
8. [Activation of nuclear factor kappaB (NF-kappaB), induction of proinflammatory cytokines in vitro and evaluation of biocompatibility of the carbonate ceramic in vivo]. Zywicka B; Czarny A; Zaczyńska E; Karaś J Polim Med; 2006; 36(3):23-35. PubMed ID: 17190290 [TBL] [Abstract][Full Text] [Related]
9. Investigation of using Cyclic Olefin Copolymer as Neural Electrode. Baek C; Seo JM Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5129-5132. PubMed ID: 31947013 [TBL] [Abstract][Full Text] [Related]
10. Design, characterization and testing of Ti-based multicomponent coatings for load-bearing medical applications. Shtansky DV; Gloushankova NA; Sheveiko AN; Kharitonova MA; Moizhess TG; Levashov EA; Rossi F Biomaterials; 2005 Jun; 26(16):2909-24. PubMed ID: 15603786 [TBL] [Abstract][Full Text] [Related]
11. Characterization of bonding between poly(dimethylsiloxane) and cyclic olefin copolymer using corona discharge induced grafting polymerization. Liu K; Gu P; Hamaker K; Fan ZH J Colloid Interface Sci; 2012 Jan; 365(1):289-95. PubMed ID: 21962541 [TBL] [Abstract][Full Text] [Related]
12. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties. Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560 [TBL] [Abstract][Full Text] [Related]
13. Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models. van Midwoud PM; Janse A; Merema MT; Groothuis GM; Verpoorte E Anal Chem; 2012 May; 84(9):3938-44. PubMed ID: 22444457 [TBL] [Abstract][Full Text] [Related]
14. Synthesis, characterization and cytotoxicity of poly(ethylene glycol)-graft-trimethyl chitosan block copolymers. Mao S; Shuai X; Unger F; Wittmar M; Xie X; Kissel T Biomaterials; 2005 Nov; 26(32):6343-56. PubMed ID: 15913769 [TBL] [Abstract][Full Text] [Related]
15. Coordination complexes as molecular glue for immobilization of antibodies on cyclic olefin copolymer surfaces. Ooi HW; Cooper SJ; Huang CY; Jennins D; Chung E; Maeji NJ; Whittaker AK Anal Biochem; 2014 Jul; 456():6-13. PubMed ID: 24721294 [TBL] [Abstract][Full Text] [Related]
16. Hydrophilic surface modification of cyclic olefin copolymer microfluidic chips using sequential photografting. Stachowiak TB; Mair DA; Holden TG; Lee LJ; Svec F; Fréchet JM J Sep Sci; 2007 May; 30(7):1088-93. PubMed ID: 17566345 [TBL] [Abstract][Full Text] [Related]
17. In vitro and in vivo biocompatibility of chitosan-xanthan polyionic complex. Chellat F; Tabrizian M; Dumitriu S; Chornet E; Magny P; Rivard CH; Yahia L J Biomed Mater Res; 2000 Jul; 51(1):107-16. PubMed ID: 10813751 [TBL] [Abstract][Full Text] [Related]
18. Exposure of the murine RAW 264.7 macrophage cell line to dicalcium silicate coating: assessment of cytotoxicity and pro-inflammatory effects. Chen L; Zhang Y; Liu J; Wei L; Song B; Shao L J Mater Sci Mater Med; 2016 Mar; 27(3):59. PubMed ID: 26800690 [TBL] [Abstract][Full Text] [Related]
19. Hydrophilic polymers--biocompatibility testing in vitro. Kejlová K; Labský J; Jírová D; Bendová H Toxicol In Vitro; 2005 Oct; 19(7):957-62. PubMed ID: 16081240 [TBL] [Abstract][Full Text] [Related]
20. Biological and nano-indentation properties of polybenzoxazine-based composites reinforced with zirconia particles as a novel biomaterial. Lotfi L; Javadpour J; Naimi-Jamal MR Biomed Mater Eng; 2018; 29(3):369-387. PubMed ID: 29578464 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]