These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
739 related articles for article (PubMed ID: 30678947)
41. Phenytoin/sildenafil loaded poly(lactic acid) bilayer nanofibrous scaffolds for efficient orthopedics regeneration. Ali IH; Khalil IA; El-Sherbiny IM Int J Biol Macromol; 2019 Sep; 136():154-164. PubMed ID: 31195040 [TBL] [Abstract][Full Text] [Related]
42. Acceleration of chondrogenic differentiation utilizing biphasic core-shell alginate sulfate electrospun nanofibrous scaffold. Omrani E; Haramshahi MA; Najmoddin N; Saeed M; Pezeshki-Modaress M Colloids Surf B Biointerfaces; 2024 Oct; 242():114080. PubMed ID: 39003847 [TBL] [Abstract][Full Text] [Related]
43. Electrospun poly(vinyl alcohol)/reduced graphene oxide nanofibrous scaffolds for skin tissue engineering. Narayanan KB; Park GT; Han SS Colloids Surf B Biointerfaces; 2020 Jul; 191():110994. PubMed ID: 32298954 [TBL] [Abstract][Full Text] [Related]
44. Development of highly porous biodegradable γ-Fe Ngadiman NH; Yusof NM; Idris A; Misran E; Kurniawan D Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):520-534. PubMed ID: 27770924 [TBL] [Abstract][Full Text] [Related]
45. Nanofibers from blends of polyvinyl alcohol and polyhydroxy butyrate as potential scaffold material for tissue engineering of skin. Asran ASh; Razghandi K; Aggarwal N; Michler GH; Groth T Biomacromolecules; 2010 Dec; 11(12):3413-21. PubMed ID: 21090703 [TBL] [Abstract][Full Text] [Related]
46. Fabrication and Characterization of Core-Shell Nanofibers Using a Next-Generation Airbrush for Biomedical Applications. Singh R; Ahmed F; Polley P; Giri J ACS Appl Mater Interfaces; 2018 Dec; 10(49):41924-41934. PubMed ID: 30433758 [TBL] [Abstract][Full Text] [Related]
47. Incorporating platelet-rich plasma into coaxial electrospun nanofibers for bone tissue engineering. Cheng G; Ma X; Li J; Cheng Y; Cao Y; Wang Z; Shi X; Du Y; Deng H; Li Z Int J Pharm; 2018 Aug; 547(1-2):656-666. PubMed ID: 29886100 [TBL] [Abstract][Full Text] [Related]
48. Incorporating chitin derived glucosamine sulfate into nanofibers via coaxial electrospinning for cartilage regeneration. Chen W; Wang C; Gao Y; Wu Y; Wu G; Shi X; Du Y; Deng H Carbohydr Polym; 2020 Feb; 229():115544. PubMed ID: 31826435 [TBL] [Abstract][Full Text] [Related]
49. Engineering poly(hydroxy butyrate-co-hydroxy valerate) based vascular scaffolds to mimic native artery. Deepthi S; Nivedhitha Sundaram M; Vijayan P; Nair SV; Jayakumar R Int J Biol Macromol; 2018 Apr; 109():85-98. PubMed ID: 29247731 [TBL] [Abstract][Full Text] [Related]
50. Development of novel silk fibroin/polyvinyl alcohol/sol-gel bioactive glass composite matrix by modified layer by layer electrospinning method for bone tissue construct generation. Singh BN; Pramanik K Biofabrication; 2017 Mar; 9(1):015028. PubMed ID: 28332482 [TBL] [Abstract][Full Text] [Related]
51. Promoting neural cell proliferation and differentiation by incorporating lignin into electrospun poly(vinyl alcohol) and poly(glycerol sebacate) fibers. Saudi A; Amini S; Amirpour N; Kazemi M; Zargar Kharazi A; Salehi H; Rafienia M Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():110005. PubMed ID: 31499996 [TBL] [Abstract][Full Text] [Related]
52. Polycaprolactone/carboxymethyl chitosan nanofibrous scaffolds for bone tissue engineering application. Sharifi F; Atyabi SM; Norouzian D; Zandi M; Irani S; Bakhshi H Int J Biol Macromol; 2018 Aug; 115():243-248. PubMed ID: 29654862 [TBL] [Abstract][Full Text] [Related]
53. Electrospun Nanofiber Scaffolds and Their Hydrogel Composites for the Engineering and Regeneration of Soft Tissues. Manoukian OS; Matta R; Letendre J; Collins P; Mazzocca AD; Kumbar SG Methods Mol Biol; 2017; 1570():261-278. PubMed ID: 28238143 [TBL] [Abstract][Full Text] [Related]
54. 3-D mineralized silk fibroin/polycaprolactone composite scaffold modified with polyglutamate conjugated with BMP-2 peptide for bone tissue engineering. Luo J; Zhang H; Zhu J; Cui X; Gao J; Wang X; Xiong J Colloids Surf B Biointerfaces; 2018 Mar; 163():369-378. PubMed ID: 29335199 [TBL] [Abstract][Full Text] [Related]
55. Modulation of Bone-Specific Tissue Regeneration by Incorporating Bone Morphogenetic Protein and Controlling the Shell Thickness of Silk Fibroin/Chitosan/Nanohydroxyapatite Core-Shell Nanofibrous Membranes. Shalumon KT; Lai GJ; Chen CH; Chen JP ACS Appl Mater Interfaces; 2015 Sep; 7(38):21170-81. PubMed ID: 26355766 [TBL] [Abstract][Full Text] [Related]
57. Polymeric electrospun scaffolds for bone morphogenetic protein 2 delivery in bone tissue engineering. Aragón J; Salerno S; De Bartolo L; Irusta S; Mendoza G J Colloid Interface Sci; 2018 Dec; 531():126-137. PubMed ID: 30029031 [TBL] [Abstract][Full Text] [Related]
58. The use of chitosan/PLA nano-fibers by emulsion eletrospinning for periodontal tissue engineering. Shen R; Xu W; Xue Y; Chen L; Ye H; Zhong E; Ye Z; Gao J; Yan Y Artif Cells Nanomed Biotechnol; 2018; 46(sup2):419-430. PubMed ID: 29661034 [TBL] [Abstract][Full Text] [Related]
59. Generation of insulin-producing cells from human induced pluripotent stem cells on PLLA/PVA nanofiber scaffold. Enderami SE; Kehtari M; Abazari MF; Ghoraeian P; Nouri Aleagha M; Soleimanifar F; Soleimani M; Mortazavi Y; Nadri S; Mostafavi H; Askari H Artif Cells Nanomed Biotechnol; 2018; 46(sup1):1062-1069. PubMed ID: 29486602 [TBL] [Abstract][Full Text] [Related]
60. Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite-tussah silk fibroin nanoparticles for bone tissue engineering. Shao W; He J; Sang F; Ding B; Chen L; Cui S; Li K; Han Q; Tan W Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():342-51. PubMed ID: 26478319 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]