BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 30678958)

  • 21. Segmental stability in orthognathic surgery: hydroxyapatite/Poly-l-lactide osteoconductive composite versus titanium miniplate osteosyntheses.
    Landes CA; Ballon A; Tran A; Ghanaati S; Sader R
    J Craniomaxillofac Surg; 2014 Sep; 42(6):930-42. PubMed ID: 24534684
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of custom-made bioresorbable raw particulate hydroxyapatite/poly-L-lactide mesh tray with particulate cellular bone and marrow and platelet-rich plasma for a mandibular defect: evaluation of tray fit and bone quality in a dog model.
    Matsuo A; Takahashi H; Abukawa H; Chikazu D
    J Craniomaxillofac Surg; 2012 Dec; 40(8):e453-60. PubMed ID: 22503081
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bone Coverage around Hydroxyapatite/Poly(
    Morizane K; Goto K; Kawai T; Fujibayashi S; Otsuki B; Shimizu T; Matsuda S
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33802655
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bone bonding ability of a new biodegradable composite for internal fixation of bone fractures.
    Furukawa T; Matsusue Y; Yasunaga T; Nakagawa Y; Shikinami Y; Okuno M; Nakamura T
    Clin Orthop Relat Res; 2000 Oct; (379):247-58. PubMed ID: 11039814
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bone Regeneration Capacity of Newly Developed Uncalcined/Unsintered Hydroxyapatite and Poly-l-lactide-co-glycolide Sheet in Maxillofacial Surgery: An In Vivo Study.
    Ngo HX; Dong QN; Bai Y; Sha J; Ishizuka S; Okui T; Sukegawa S; Kanno T
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33374294
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation and properties of poly(L-lactide)/hydroxyapatite composites.
    Kesenci K; Fambri L; Migliaresi C; Pişkin E
    J Biomater Sci Polym Ed; 2000; 11(6):617-32. PubMed ID: 10981677
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improved mechanical properties of hydroxyapatite whisker-reinforced poly(L-lactic acid) scaffold by surface modification of hydroxyapatite.
    Fang Z; Feng Q
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():190-4. PubMed ID: 24411368
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A bioactive and bioresorbable porous cubic composite scaffold loaded with bone marrow aspirate: a potential alternative to autogenous bone grafting.
    Tanaka K; Takemoto M; Fujibayashi S; Neo M; Shikinami Y; Nakamura T
    Spine (Phila Pa 1976); 2011 Mar; 36(6):441-7. PubMed ID: 21124263
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Long-term study of high-strength hydroxyapatite/poly(L-lactide) composite rods for the internal fixation of bone fractures: a 2-4-year follow-up study in rabbits.
    Ishii S; Tamura J; Furukawa T; Nakamura T; Matsusue Y; Shikinami Y; Okuno M
    J Biomed Mater Res B Appl Biomater; 2003 Aug; 66(2):539-47. PubMed ID: 12861605
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation, physicochemical characterization, and in vitro and in vivo osteogenic evaluation of a bioresorbable, moldable, hydroxyapatite/poly(caprolactone-co-lactide) bone substitute.
    Wu Y; Zeng W; Xu J; Sun Y; Huang Y; Xiang D; Zhang C; Fu Z; Deng F; Yu D
    J Biomed Mater Res A; 2023 Mar; 111(3):367-377. PubMed ID: 36269049
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biological evaluation of hydroxyapatite/poly-L-lactide (HAp/PLLA) composite biomaterials with poly-L-lactide of different molecular weights intraperitoneally implanted into mice.
    Najman S; Savic V; Djordjevic Lj; Ignjatovic N; Uskokovic D
    Biomed Mater Eng; 2004; 14(1):61-70. PubMed ID: 14757954
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydroxyapatite/poly-L-lactide acid screws have better biocompatibility and femoral burr hole closure than does poly-L-lactide acid alone.
    Akagi H; Iwata M; Ichinohe T; Amimoto H; Hayashi Y; Kannno N; Ochi H; Fujita Y; Harada Y; Tagawa M; Hara Y
    J Biomater Appl; 2014 Feb; 28(6):954-62. PubMed ID: 23680818
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Treatment of malar and midfacial fractures with osteoconductive forged unsintered hydroxyapatite and poly-L-lactide composite internal fixation devices.
    Landes C; Ballon A; Ghanaati S; Tran A; Sader R
    J Oral Maxillofac Surg; 2014 Jul; 72(7):1328-38. PubMed ID: 24704037
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RGD-conjugated copolymer incorporated into composite of poly(lactide-co-glycotide) and poly(L-lactide)-grafted nanohydroxyapatite for bone tissue engineering.
    Zhang P; Wu H; Wu H; Lù Z; Deng C; Hong Z; Jing X; Chen X
    Biomacromolecules; 2011 Jul; 12(7):2667-80. PubMed ID: 21604718
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fixation of distal femoral osteotomies with self-reinforced poly(L/DL)lactide 70:30 and self-reinforced poly(L/DL)lactide 70: 30/bioactive glass composite rods. an experimental study on rabbits.
    Pyhältö T; Lapinsuo M; Pätiälä H; Niiranen H; Törmälä P; Rokkanen P
    J Biomater Sci Polym Ed; 2005; 16(6):725-44. PubMed ID: 16028593
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro investigation of nanohydroxyapatite/poly(L-lactic acid) spindle composites used for bone tissue engineering.
    Yan W; Zhang CY; Xia LL; Zhang T; Fang QF
    J Mater Sci Mater Med; 2016 Aug; 27(8):130. PubMed ID: 27379628
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of Hydroxyapatite Surface Functionalization on Thermal and Biological Properties of Poly(l-Lactide)- and Poly(l-Lactide-co-Glycolide)-Based Composites.
    Gazińska M; Krokos A; Kobielarz M; Włodarczyk M; Skibińska P; Stępak B; Antończak A; Morawiak M; Płociński P; Rudnicka K
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32933206
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biomechanical Loading Comparison between Titanium and Unsintered Hydroxyapatite/Poly-L-Lactide Plate System for Fixation of Mandibular Subcondylar Fractures.
    Sukegawa S; Kanno T; Yamamoto N; Nakano K; Takabatake K; Kawai H; Nagatsuka H; Furuki Y
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31085981
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioactive Regeneration Potential of the Newly Developed Uncalcined/Unsintered Hydroxyapatite and Poly-l-Lactide-Co-Glycolide Biomaterial in Maxillofacial Reconstructive Surgery: An In Vivo Preliminary Study.
    Ishizuka S; Dong QN; Ngo HX; Bai Y; Sha J; Toda E; Okui T; Kanno T
    Materials (Basel); 2021 May; 14(9):. PubMed ID: 34068558
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanics, degradability, bioactivity, in vitro, and in vivo biocompatibility evaluation of poly(amino acid)/hydroxyapatite/calcium sulfate composite for potential load-bearing bone repair.
    Fan X; Ren H; Luo X; Wang P; Lv G; Yuan H; Li H; Yan Y
    J Biomater Appl; 2016 Mar; 30(8):1261-72. PubMed ID: 26635202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.