BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 30678968)

  • 21. BAR-encapsulated nanoparticles for the inhibition and disruption of Porphyromonas gingivalis-Streptococcus gordonii biofilms.
    Mahmoud MY; Demuth DR; Steinbach-Rankins JM
    J Nanobiotechnology; 2018 Sep; 16(1):69. PubMed ID: 30219060
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative studies of lamivudine-zidovudine nanoparticles for the selective uptake by macrophages.
    Sankar V; Nareshkumar PN; Ajitkumar GN; Penmetsa SD; Hariharan S
    Curr Drug Deliv; 2012 Sep; 9(5):506-14. PubMed ID: 22452408
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation and Evaluation of Irinotecan Poly(Lactic-co-Glycolic Acid) Nanoparticles for Enhanced Anti-tumor Therapy.
    Yang X; Yang Y; Jia Q; Hao Y; Liu J; Huang G
    AAPS PharmSciTech; 2019 Feb; 20(3):133. PubMed ID: 30820689
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis and self-assembly of curcumin-modified amphiphilic polymeric micelles with antibacterial activity.
    Barros CHN; Hiebner DW; Fulaz S; Vitale S; Quinn L; Casey E
    J Nanobiotechnology; 2021 Apr; 19(1):104. PubMed ID: 33849570
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PLGA nanoparticles for peroral delivery: How important is pancreatic digestion and can we control it?
    Mante A; Heider M; Zlomke C; Mäder K
    Eur J Pharm Biopharm; 2016 Nov; 108():32-40. PubMed ID: 27553262
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dry powders based on PLGA nanoparticles for pulmonary delivery of antibiotics: modulation of encapsulation efficiency, release rate and lung deposition pattern by hydrophilic polymers.
    Ungaro F; d'Angelo I; Coletta C; d'Emmanuele di Villa Bianca R; Sorrentino R; Perfetto B; Tufano MA; Miro A; La Rotonda MI; Quaglia F
    J Control Release; 2012 Jan; 157(1):149-59. PubMed ID: 21864595
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Disassembling bacterial extracellular matrix with DNase-coated nanoparticles to enhance antibiotic delivery in biofilm infections.
    Baelo A; Levato R; Julián E; Crespo A; Astola J; Gavaldà J; Engel E; Mateos-Timoneda MA; Torrents E
    J Control Release; 2015 Jul; 209():150-8. PubMed ID: 25913364
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antibacterial efficacy of rifampin loaded solid lipid nanoparticles against Staphylococcus epidermidis biofilm.
    Fazly Bazzaz BS; Khameneh B; Zarei H; Golmohammadzadeh S
    Microb Pathog; 2016 Apr; 93():137-44. PubMed ID: 26853754
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of surfactants on the target recognition of Fab-conjugated PLGA nanoparticles.
    Kennedy PJ; Perreira I; Ferreira D; Nestor M; Oliveira C; Granja PL; Sarmento B
    Eur J Pharm Biopharm; 2018 Jun; 127():366-370. PubMed ID: 29549023
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Imaging of intracellular behavior of polymeric nanoparticles in Staphylococcus epidermidis biofilms by slit-scanning confocal Raman microscopy and scanning electron microscopy with energy-dispersive X-ray spectroscopy.
    Takahashi C; Ueno K; Aoyama J; Adachi M; Yamamoto H
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():1066-1074. PubMed ID: 28482470
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of surface modification of PLGA-PEG-PLGA nanoparticles on loperamide delivery efficiency across the blood-brain barrier.
    Chen YC; Hsieh WY; Lee WF; Zeng DT
    J Biomater Appl; 2013 Mar; 27(7):909-22. PubMed ID: 22207601
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative evaluation of antibacterial activity of caffeic acid phenethyl ester and PLGA nanoparticle formulation by different methods.
    Arasoglu T; Derman S; Mansuroglu B
    Nanotechnology; 2016 Jan; 27(2):025103. PubMed ID: 26629915
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrasmall TPGS-PLGA Hybrid Nanoparticles for Site-Specific Delivery of Antibiotics into
    Wan F; Bohr SS; Kłodzińska SN; Jumaa H; Huang Z; Nylander T; Thygesen MB; Sørensen KK; Jensen KJ; Sternberg C; Hatzakis N; Mørck Nielsen H
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):380-389. PubMed ID: 31804792
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PEGylated PLGA Nanoparticles As a Smart Carrier to Increase the Cellular Uptake of a Coumarin-Based Monoamine Oxidase B Inhibitor.
    Fernandes C; Martins C; Fonseca A; Nunes R; Matos MJ; Silva R; Garrido J; Sarmento B; Remião F; Otero-Espinar FJ; Uriarte E; Borges F
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):39557-39569. PubMed ID: 30352150
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development and Characterization of PLGA Nanoparticle-Laden Hydrogels for Sustained Ocular Delivery of Norfloxacin in the Treatment of
    Gebreel RM; Edris NA; Elmofty HM; Tadros MI; El-Nabarawi MA; Hassan DH
    Drug Des Devel Ther; 2021; 15():399-418. PubMed ID: 33584095
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development and effect of storage on the stability of enriched flavonoid fraction of
    Santos TCD; Battisti MA; Ortmann CF; Reginatto FH; Simões CMO; de Campos AM
    Pharm Dev Technol; 2018 Dec; 23(10):998-1006. PubMed ID: 27707078
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxcarbazepine free or loaded PLGA nanoparticles as effective intranasal approach to control epileptic seizures in rodents.
    Musumeci T; Serapide MF; Pellitteri R; Dalpiaz A; Ferraro L; Dal Magro R; Bonaccorso A; Carbone C; Veiga F; Sancini G; Puglisi G
    Eur J Pharm Biopharm; 2018 Dec; 133():309-320. PubMed ID: 30399400
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enzyme-encapsulating polymeric nanoparticles: A potential adjunctive therapy in Pseudomonas aeruginosa biofilm-associated infection treatment.
    Han C; Goodwine J; Romero N; Steck KS; Sauer K; Doiron A
    Colloids Surf B Biointerfaces; 2019 Dec; 184():110512. PubMed ID: 31563809
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chitosan Oleate Salt as an Amphiphilic Polymer for the Surface Modification of Poly-Lactic-Glycolic Acid (PLGA) Nanoparticles. Preliminary Studies of Mucoadhesion and Cell Interaction Properties.
    Miele D; Rossi S; Sandri G; Vigani B; Sorrenti M; Giunchedi P; Ferrari F; Bonferoni MC
    Mar Drugs; 2018 Nov; 16(11):. PubMed ID: 30445668
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Utilizing nanoparticles for improving anti-biofilm effects of azithromycin: A head-to-head comparison of modified hyaluronic acid nanogels and coated poly (lactic-co-glycolic acid) nanoparticles.
    Kłodzińska SN; Wan F; Jumaa H; Sternberg C; Rades T; Nielsen HM
    J Colloid Interface Sci; 2019 Nov; 555():595-606. PubMed ID: 31404843
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.