BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 30679259)

  • 1. Detecting Adaptive Differentiation in Structured Populations with Genomic Data and Common Gardens.
    Josephs EB; Berg JJ; Ross-Ibarra J; Coop G
    Genetics; 2019 Mar; 211(3):989-1004. PubMed ID: 30679259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic architecture and selective sweeps after polygenic adaptation to distant trait optima.
    Stetter MG; Thornton K; Ross-Ibarra J
    PLoS Genet; 2018 Nov; 14(11):e1007794. PubMed ID: 30452452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation of maize to temperate climates: mid-density genome-wide association genetics and diversity patterns reveal key genomic regions, with a major contribution of the Vgt2 (ZCN8) locus.
    Bouchet S; Servin B; Bertin P; Madur D; Combes V; Dumas F; Brunel D; Laborde J; Charcosset A; Nicolas S
    PLoS One; 2013; 8(8):e71377. PubMed ID: 24023610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modes of Rapid Polygenic Adaptation.
    Jain K; Stephan W
    Mol Biol Evol; 2017 Dec; 34(12):3169-3175. PubMed ID: 28961935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polygenic Adaptation: Integrating Population Genetics and Gene Regulatory Networks.
    Fagny M; Austerlitz F
    Trends Genet; 2021 Jul; 37(7):631-638. PubMed ID: 33892958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of genetic differentiation and genomic variation to reveal potential regions of importance during maize improvement.
    Wu X; Li Y; Li X; Li C; Shi Y; Song Y; Zheng Z; Li Y; Wang T
    BMC Plant Biol; 2015 Oct; 15():256. PubMed ID: 26496865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polygenic adaptation: From sweeps to subtle frequency shifts.
    Höllinger I; Pennings PS; Hermisson J
    PLoS Genet; 2019 Mar; 15(3):e1008035. PubMed ID: 30893299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A population genetic signal of polygenic adaptation.
    Berg JJ; Coop G
    PLoS Genet; 2014 Aug; 10(8):e1004412. PubMed ID: 25102153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comprehensive study of the genomic differentiation between temperate Dent and Flint maize.
    Unterseer S; Pophaly SD; Peis R; Westermeier P; Mayer M; Seidel MA; Haberer G; Mayer KF; Ordas B; Pausch H; Tellier A; Bauer E; Schön CC
    Genome Biol; 2016 Jul; 17(1):137. PubMed ID: 27387028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological traits contribute to growth and adaptation of Mexican maize landraces.
    Pace BA; Perales HR; Gonzalez-Maldonado N; Mercer KL
    PLoS One; 2024; 19(2):e0290815. PubMed ID: 38300909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Connecting genomic patterns of local adaptation and niche suitability in teosintes.
    Aguirre-Liguori JA; Tenaillon MI; Vázquez-Lobo A; Gaut BS; Jaramillo-Correa JP; Montes-Hernandez S; Souza V; Eguiarte LE
    Mol Ecol; 2017 Aug; 26(16):4226-4240. PubMed ID: 28612956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detecting Polygenic Adaptation in Admixture Graphs.
    Racimo F; Berg JJ; Pickrell JK
    Genetics; 2018 Apr; 208(4):1565-1584. PubMed ID: 29348143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting the genomic signal of polygenic adaptation and the role of epistasis in evolution.
    Csilléry K; Rodríguez-Verdugo A; Rellstab C; Guillaume F
    Mol Ecol; 2018 Feb; 27(3):606-612. PubMed ID: 29385652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. European flint landraces grown in situ reveal adaptive introgression from modern maize.
    Bitocchi E; Bellucci E; Rau D; Albertini E; Rodriguez M; Veronesi F; Attene G; Nanni L
    PLoS One; 2015; 10(4):e0121381. PubMed ID: 25853809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncovering the genetic signature of quantitative trait evolution with replicated time series data.
    Franssen SU; Kofler R; Schlötterer C
    Heredity (Edinb); 2017 Jan; 118(1):42-51. PubMed ID: 27848948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Population genomics of Zea species identifies selection signatures during maize domestication and adaptation.
    Xu G; Zhang X; Chen W; Zhang R; Li Z; Wen W; Warburton ML; Li J; Li H; Yang X
    BMC Plant Biol; 2022 Feb; 22(1):72. PubMed ID: 35180846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of beneficial haplotypes for complex traits in maize landraces.
    Mayer M; Hölker AC; González-Segovia E; Bauer E; Presterl T; Ouzunova M; Melchinger AE; Schön CC
    Nat Commun; 2020 Oct; 11(1):4954. PubMed ID: 33009396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic Architecture of Domestication-Related Traits in Maize.
    Xue S; Bradbury PJ; Casstevens T; Holland JB
    Genetics; 2016 Sep; 204(1):99-113. PubMed ID: 27412713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of whole-genome prediction models for traits with contrasting genetic architecture in a diversity panel of maize inbred lines.
    Riedelsheimer C; Technow F; Melchinger AE
    BMC Genomics; 2012 Sep; 13():452. PubMed ID: 22947126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying loci with breeding potential across temperate and tropical adaptation via EigenGWAS and EnvGWAS.
    Li J; Chen GB; Rasheed A; Li D; Sonder K; Zavala Espinosa C; Wang J; Costich DE; Schnable PS; Hearne SJ; Li H
    Mol Ecol; 2019 Aug; 28(15):3544-3560. PubMed ID: 31287919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.