BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 30679328)

  • 1. Blockade of crizotinib-induced BCL2 elevation in ALK-positive anaplastic large cell lymphoma triggers autophagy associated with cell death.
    Torossian A; Broin N; Frentzel J; Daugrois C; Gandarillas S; Saati TA; Lamant L; Brousset P; Giuriato S; Espinos E
    Haematologica; 2019 Jul; 104(7):1428-1439. PubMed ID: 30679328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting autophagy enhances the anti-tumoral action of crizotinib in ALK-positive anaplastic large cell lymphoma.
    Mitou G; Frentzel J; Desquesnes A; Le Gonidec S; AlSaati T; Beau I; Lamant L; Meggetto F; Espinos E; Codogno P; Brousset P; Giuriato S
    Oncotarget; 2015 Oct; 6(30):30149-64. PubMed ID: 26338968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tyrosine phosphatases regulate resistance to ALK inhibitors in ALK+ anaplastic large cell lymphoma.
    Karaca Atabay E; Mecca C; Wang Q; Ambrogio C; Mota I; Prokoph N; Mura G; Martinengo C; Patrucco E; Leonardi G; Hossa J; Pich A; Mologni L; Gambacorti-Passerini C; Brugières L; Geoerger B; Turner SD; Voena C; Cheong TC; Chiarle R
    Blood; 2022 Feb; 139(5):717-731. PubMed ID: 34657149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crizotinib (PF-2341066) induces apoptosis due to downregulation of pSTAT3 and BCL-2 family proteins in NPM-ALK(+) anaplastic large cell lymphoma.
    Hamedani FS; Cinar M; Mo Z; Cervania MA; Amin HM; Alkan S
    Leuk Res; 2014 Apr; 38(4):503-8. PubMed ID: 24486291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MiR-29a down-regulation in ALK-positive anaplastic large cell lymphomas contributes to apoptosis blockade through MCL-1 overexpression.
    Desjobert C; Renalier MH; Bergalet J; Dejean E; Joseph N; Kruczynski A; Soulier J; Espinos E; Meggetto F; Cavaillé J; Delsol G; Lamant L
    Blood; 2011 Jun; 117(24):6627-37. PubMed ID: 21471522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elimination of dormant, autophagic ovarian cancer cells and xenografts through enhanced sensitivity to anaplastic lymphoma kinase inhibition.
    Blessing AM; Santiago-O'Farrill JM; Mao W; Pang L; Ning J; Pak D; Bollu LR; Rask P; Iles L; Yang H; Tran S; Elmir E; Bartholomeusz G; Langley R; Lu Z; Bast RC
    Cancer; 2020 Aug; 126(15):3579-3592. PubMed ID: 32484926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leukemic presentation of ALK-positive anaplastic large cell lymphoma with a novel partner, poly(A) binding protein cytoplasmic 1 (PABPC1), responding to single-agent crizotinib.
    Graetz D; Crews KR; Azzato EM; Singh RK; Raimondi S; Mason J; Valentine M; Mullighan CG; Holland A; Inaba H; Leventaki V
    Haematologica; 2019 May; 104(5):e218-e221. PubMed ID: 30819904
    [No Abstract]   [Full Text] [Related]  

  • 8. Crizotinib in Combination with Everolimus Synergistically Inhibits Proliferation of Anaplastic Lymphoma Kinase‒Positive Anaplastic Large Cell Lymphoma.
    Xu W; Kim JW; Jung WJ; Koh Y; Yoon SS
    Cancer Res Treat; 2018 Apr; 50(2):599-613. PubMed ID: 28675026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crizotinib enhances anti-CD30-LDM induced antitumor efficacy in NPM-ALK positive anaplastic large cell lymphoma.
    Wang R; Li L; Duan A; Li Y; Liu X; Miao Q; Gong J; Zhen Y
    Cancer Lett; 2019 Apr; 448():84-93. PubMed ID: 30742941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Therapeutic efficacy of the bromodomain inhibitor OTX015/MK-8628 in ALK-positive anaplastic large cell lymphoma: an alternative modality to overcome resistant phenotypes.
    Boi M; Todaro M; Vurchio V; Yang SN; Moon J; Kwee I; Rinaldi A; Pan H; Crescenzo R; Cheng M; Cerchietti L; Elemento O; Riveiro ME; Cvitkovic E; Bertoni F; Inghirami G;
    Oncotarget; 2016 Nov; 7(48):79637-79653. PubMed ID: 27793034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crizotinib induces apoptosis and gene expression changes in ALK+ anaplastic large cell lymphoma cell lines; brentuximab synergizes and doxorubicin antagonizes.
    Hudson S; Wang D; Middleton F; Nevaldine BH; Naous R; Hutchison RE
    Pediatr Blood Cancer; 2018 Aug; 65(8):e27094. PubMed ID: 29697184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IL10RA modulates crizotinib sensitivity in NPM1-ALK+ anaplastic large cell lymphoma.
    Prokoph N; Probst NA; Lee LC; Monahan JM; Matthews JD; Liang HC; Bahnsen K; Montes-Mojarro IA; Karaca-Atabay E; Sharma GG; Malik V; Larose H; Forde SD; Ducray SP; Lobello C; Wang Q; Luan SL; Pospíšilová Š; Gambacorti-Passerini C; Burke GAA; Pervez S; Attarbaschi A; Janíková A; Pacquement H; Landman-Parker J; Lambilliotte A; Schleiermacher G; Klapper W; Jauch R; Woessmann W; Vassal G; Kenner L; Merkel O; Mologni L; Chiarle R; Brugières L; Geoerger B; Barbieri I; Turner SD
    Blood; 2020 Oct; 136(14):1657-1669. PubMed ID: 32573700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of IGF-1R pathway and NPM-ALK G1269A mutation confer resistance to crizotinib treatment in NPM-ALK positive lymphoma.
    Li Y; Wang K; Song N; Hou K; Che X; Zhou Y; Liu Y; Zhang J
    Invest New Drugs; 2020 Jun; 38(3):599-609. PubMed ID: 31177400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Dual Role of Autophagy in Crizotinib-Treated ALK
    Espinos E; Lai R; Giuriato S
    Cells; 2021 Sep; 10(10):. PubMed ID: 34685497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. KRCA-0008 suppresses ALK-positive anaplastic large-cell lymphoma growth.
    Hwang J; Song I; Lee K; Kim HR; Hong EH; Hwang JS; Ahn SH; Lee J
    Invest New Drugs; 2020 Oct; 38(5):1282-1291. PubMed ID: 31956933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic Effect of Alectinib and Everolimus on ALK-positive Anaplastic Large Cell Lymphoma Growth Inhibition.
    Kim D; Koh Y; Yoon SS
    Anticancer Res; 2020 Mar; 40(3):1395-1403. PubMed ID: 32132036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alteration in the sensitivity to crizotinib by Na
    Yang F; Hu M; Chang S; Huang J; Si Y; Wang J; Cheng S; Jiang WG
    BMC Cancer; 2020 Mar; 20(1):202. PubMed ID: 32164629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A kinome-wide RNAi screen identifies ALK as a target to sensitize neuroblastoma cells for HDAC8-inhibitor treatment.
    Shen J; Najafi S; Stäble S; Fabian J; Koeneke E; Kolbinger FR; Wrobel JK; Meder B; Distel M; Heimburg T; Sippl W; Jung M; Peterziel H; Kranz D; Boutros M; Westermann F; Witt O; Oehme I
    Cell Death Differ; 2018 Dec; 25(12):2053-2070. PubMed ID: 29515255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. miR-497 suppresses cycle progression through an axis involving CDK6 in ALK-positive cells.
    Hoareau-Aveilla C; Quelen C; Congras A; Caillet N; Labourdette D; Dozier C; Brousset P; Lamant L; Meggetto F
    Haematologica; 2019 Feb; 104(2):347-359. PubMed ID: 30262555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of Mitogen-Activated Protein Kinase Kinase Alone and in Combination with Anaplastic Lymphoma Kinase (ALK) Inhibition Suppresses Tumor Growth in a Mouse Model of ALK-Positive Lung Cancer.
    Shrestha N; Bland AR; Bower RL; Rosengren RJ; Ashton JC
    J Pharmacol Exp Ther; 2020 Jul; 374(1):134-140. PubMed ID: 32284325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.