These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30679539)

  • 1. Near-field optical trapping in a non-conservative force field.
    Zaman MA; Padhy P; Hesselink L
    Sci Rep; 2019 Jan; 9(1):649. PubMed ID: 30679539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solenoidal optical forces from a plasmonic Archimedean spiral.
    Zaman MA; Padhy P; Hesselink L
    Phys Rev A (Coll Park); 2019 Jul; 100(1):. PubMed ID: 33981919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the substrate contribution to the back action trapping of plasmonic nanoparticles on resonant near-field traps in plasmonic films.
    Padhy P; Zaman MA; Hansen P; Hesselink L
    Opt Express; 2017 Oct; 25(21):26198-26214. PubMed ID: 29041280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fokker-Planck analysis of optical near-field traps.
    Zaman MA; Padhy P; Hesselink L
    Sci Rep; 2019 Jul; 9(1):9557. PubMed ID: 31266994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Holographic optical trapping of microrods and nanowires.
    Simpson SH; Hanna S
    J Opt Soc Am A Opt Image Sci Vis; 2010 Jun; 27(6):1255-64. PubMed ID: 20508694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-plane near-field optical barrier on a chip.
    Padhy P; Zaman MA; Hesselink L
    Opt Lett; 2019 Apr; 44(8):2061-2064. PubMed ID: 30985811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Optical Vortex Trapping of Plasmonic Nanostructure.
    Liaw JW; Chien CW; Liu KC; Ku YC; Kuo MK
    Sci Rep; 2018 Aug; 8(1):12673. PubMed ID: 30140032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamically controllable plasmonic tweezers using C-shaped nano-engravings.
    Zaman MA; Hesselink L
    Appl Phys Lett; 2022 Oct; 121(18):181108. PubMed ID: 36340998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct measurement of the nonconservative force field generated by optical tweezers.
    Wu P; Huang R; Tischer C; Jonas A; Florin EL
    Phys Rev Lett; 2009 Sep; 103(10):108101. PubMed ID: 19792342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers.
    Brzobohatý O; Šiler M; Trojek J; Chvátal L; Karásek V; Paták A; Pokorná Z; Mika F; Zemánek P
    Sci Rep; 2015 Jan; 5():8106. PubMed ID: 25630432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiation torque and force on optically trapped linear nanostructures.
    Borghese F; Denti P; Saija R; Iatì MA; Maragò OM
    Phys Rev Lett; 2008 Apr; 100(16):163903. PubMed ID: 18518199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct Measurement of Optical Force Induced by Near-Field Plasmonic Cavity Using Dynamic Mode AFM.
    Guan D; Hang ZH; Marcet Z; Liu H; Kravchenko II; Chan CT; Chan HB; Tong P
    Sci Rep; 2015 Nov; 5():16216. PubMed ID: 26586455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity.
    Huang WH; Li SF; Xu HT; Xiang ZX; Long YB; Deng HD
    Opt Express; 2018 Mar; 26(5):6202-6213. PubMed ID: 29529812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic trapping with a gold nanopillar.
    Wang K; Crozier KB
    Chemphyschem; 2012 Aug; 13(11):2639-48. PubMed ID: 22623501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Prediction and Analysis of Optical Trapping at Nanoscale via Finite Element Tearing and Interconnecting Method.
    Wan T; Tang B
    Nanoscale Res Lett; 2019 Aug; 14(1):294. PubMed ID: 31456066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-plane trapping and manipulation of ZnO nanowires by a hybrid plasmonic field.
    Zhang L; Dou X; Min C; Zhang Y; Du L; Xie Z; Shen J; Zeng Y; Yuan X
    Nanoscale; 2016 May; 8(18):9756-63. PubMed ID: 27117313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Helmholtz Hodge decomposition of scalar optical fields.
    Bahl M; Senthilkumaran P
    J Opt Soc Am A Opt Image Sci Vis; 2012 Nov; 29(11):2421-7. PubMed ID: 23201805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Meshless helmholtz-hodge decomposition.
    Petronetto F; Paiva A; Lage M; Tavares G; Lopes H; Lewiner T
    IEEE Trans Vis Comput Graph; 2010; 16(2):338-49. PubMed ID: 20075492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic trapping and tuning of a gold nanoparticle dimer.
    Shen Z; Su L
    Opt Express; 2016 Mar; 24(5):4801-4811. PubMed ID: 29092308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.