These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 30679707)
1. Maximizing Electrokinetic Energy Conversion via the Intersecting Asymptotes Method. Mansouri A; Kostiuk L Sci Rep; 2019 Jan; 9(1):750. PubMed ID: 30679707 [TBL] [Abstract][Full Text] [Related]
2. A hybrid theoretical method for predicting electrokinetic energy conversion in nanochannels. Hu X; Nan Y; Kong X; Lu D; Wu J Phys Chem Chem Phys; 2020 Apr; 22(16):9110-9116. PubMed ID: 32301460 [TBL] [Abstract][Full Text] [Related]
3. Electrokinetic power generation in conical nanochannels: regulation effects due to conicity. Qian F; Zhang W; Huang D; Li W; Wang Q; Zhao C Phys Chem Chem Phys; 2020 Jan; 22(4):2386-2398. PubMed ID: 31938800 [TBL] [Abstract][Full Text] [Related]
4. Modeling electrokinetics in ionic liquids. Wang C; Bao J; Pan W; Sun X Electrophoresis; 2017 Jul; 38(13-14):1693-1705. PubMed ID: 28314048 [TBL] [Abstract][Full Text] [Related]
5. Effects of fluid slippage on pressure-driven electrokinetic energy conversion in conical nanochannels. Qian F; Guo P; Zhang W; Wang Q; Zhao C Electrophoresis; 2022 Nov; 43(21-22):2062-2073. PubMed ID: 35621205 [TBL] [Abstract][Full Text] [Related]
6. Asymmetric Electrokinetic Energy Conversion in Slip Conical Nanopores. Chang CC Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407218 [TBL] [Abstract][Full Text] [Related]
7. Numerical Model of Electrokinetic Flow for Capillary Electrophoresis. Hu L; Harrison JD; Masliyah JH J Colloid Interface Sci; 1999 Jul; 215(2):300-312. PubMed ID: 10419665 [TBL] [Abstract][Full Text] [Related]
8. Publisher Correction: Maximizing Electrokinetic Energy Conversion via the Intersecting Asymptotes Method. Mansouri A; Kostiuk L Sci Rep; 2019 Apr; 9(1):6187. PubMed ID: 30971715 [TBL] [Abstract][Full Text] [Related]
9. Electrokinetic particle translocation through a nanopore. Ai Y; Qian S Phys Chem Chem Phys; 2011 Mar; 13(9):4060-71. PubMed ID: 21229154 [TBL] [Abstract][Full Text] [Related]
10. Parametrical studies of electroosmotic transport characteristics in submicrometer channels. Postler T; Slouka Z; Svoboda M; Pribyl M; Snita D J Colloid Interface Sci; 2008 Apr; 320(1):321-32. PubMed ID: 18201714 [TBL] [Abstract][Full Text] [Related]
11. Numerical analysis of electroosmotic flow in dense regular and random arrays of impermeable, nonconducting spheres. Hlushkou D; Seidel-Morgenstern A; Tallarek U Langmuir; 2005 Jun; 21(13):6097-112. PubMed ID: 15952866 [TBL] [Abstract][Full Text] [Related]
12. Multiscale Model for Electrokinetic Transport in Networks of Pores, Part I: Model Derivation. Alizadeh S; Mani A Langmuir; 2017 Jun; 33(25):6205-6219. PubMed ID: 28498669 [TBL] [Abstract][Full Text] [Related]
13. Determination of Critical Dimensions of Microchannels to Ensure the Electrokinetic Biomolecule Preconcentration: Analytical and Numerical Studies. Dang VT; Pham VS Langmuir; 2024 Mar; 40(11):6051-6064. PubMed ID: 38437236 [TBL] [Abstract][Full Text] [Related]
14. cDPD: A new dissipative particle dynamics method for modeling electrokinetic phenomena at the mesoscale. Deng M; Li Z; Borodin O; Karniadakis GE J Chem Phys; 2016 Oct; 145(14):144109. PubMed ID: 27782504 [TBL] [Abstract][Full Text] [Related]
15. Radial basis function interpolation supplemented lattice Boltzmann method for electroosmotic flows in microchannel. Guo P; Qian F; Zhang W; Yan H; Wang Q; Zhao C Electrophoresis; 2021 Nov; 42(21-22):2171-2181. PubMed ID: 34549443 [TBL] [Abstract][Full Text] [Related]
16. Electrokinetic transport through nanochannels. Movahed S; Li D Electrophoresis; 2011 Jun; 32(11):1259-67. PubMed ID: 21538982 [TBL] [Abstract][Full Text] [Related]
18. Direct simulation of phase delay effects on induced-charge electro-osmosis under large ac electric fields. Sugioka H Phys Rev E; 2016 Aug; 94(2-1):022609. PubMed ID: 27627362 [TBL] [Abstract][Full Text] [Related]
19. Analysis of rotation-driven electrokinetic flow in microscale gap regions of rotating disk systems. Soong CY; Wang SH J Colloid Interface Sci; 2004 Jan; 269(2):484-98. PubMed ID: 14654411 [TBL] [Abstract][Full Text] [Related]