These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 30679956)

  • 1. Methanol fermentation increases the production of NAD(P)H-dependent chemicals in synthetic methylotrophic
    Wang X; Wang X; Lu X; Ma C; Chen K; Ouyang P
    Biotechnol Biofuels; 2019; 12():17. PubMed ID: 30679956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli.
    Whitaker WB; Jones JA; Bennett RK; Gonzalez JE; Vernacchio VR; Collins SM; Palmer MA; Schmidt S; Antoniewicz MR; Koffas MA; Papoutsakis ET
    Metab Eng; 2017 Jan; 39():49-59. PubMed ID: 27815193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization and evolution of an activator-independent methanol dehydrogenase from Cupriavidus necator N-1.
    Wu TY; Chen CT; Liu JT; Bogorad IW; Damoiseaux R; Liao JC
    Appl Microbiol Biotechnol; 2016 Jun; 100(11):4969-83. PubMed ID: 26846745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mixing and matching methylotrophic enzymes to design a novel methanol utilization pathway in E. coli.
    De Simone A; Vicente CM; Peiro C; Gales L; Bellvert F; Enjalbert B; Heux S
    Metab Eng; 2020 Sep; 61():315-325. PubMed ID: 32687991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Escherichia coli for methanol conversion.
    Müller JEN; Meyer F; Litsanov B; Kiefer P; Potthoff E; Heux S; Quax WJ; Wendisch VF; Brautaset T; Portais JC; Vorholt JA
    Metab Eng; 2015 Mar; 28():190-201. PubMed ID: 25596507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic methylotrophic yeasts for the sustainable fuel and chemical production.
    Wegat V; Fabarius JT; Sieber V
    Biotechnol Biofuels Bioprod; 2022 Oct; 15(1):113. PubMed ID: 36273178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive laboratory evolution of methylotrophic Escherichia coli enables synthesis of all amino acids from methanol-derived carbon.
    Har JRG; Agee A; Bennett RK; Papoutsakis ET; Antoniewicz MR
    Appl Microbiol Biotechnol; 2021 Jan; 105(2):869-876. PubMed ID: 33404828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances toward the bioconversion of methane and methanol in synthetic methylotrophs.
    Gregory GJ; Bennett RK; Papoutsakis ET
    Metab Eng; 2022 May; 71():99-116. PubMed ID: 34547453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methanol production by reversed methylotrophy constructed in
    Takeya T; Yamakita M; Hayashi D; Fujisawa K; Sakai Y; Yurimoto H
    Biosci Biotechnol Biochem; 2020 May; 84(5):1062-1068. PubMed ID: 31942827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate.
    Leßmeier L; Pfeifenschneider J; Carnicer M; Heux S; Portais JC; Wendisch VF
    Appl Microbiol Biotechnol; 2015 Dec; 99(23):10163-76. PubMed ID: 26276544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of heterologous non-oxidative pentose phosphate pathway from Bacillus methanolicus and phosphoglucose isomerase deletion improves methanol assimilation and metabolite production by a synthetic Escherichia coli methylotroph.
    Bennett RK; Gonzalez JE; Whitaker WB; Antoniewicz MR; Papoutsakis ET
    Metab Eng; 2018 Jan; 45():75-85. PubMed ID: 29203223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of
    Sun Q; Liu D; Chen Z
    Biotechnol Notes; 2023; 4():104-111. PubMed ID: 39416910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial Methylotrophic Cells via Bottom-Up Integration of a Methanol-Utilizing Pathway.
    Wang K; Liu X; Hu KKY; Haritos VS
    ACS Synth Biol; 2024 Mar; 13(3):888-900. PubMed ID: 38359048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Corynebacterium glutamicum for methanol-dependent growth and glutamate production.
    Tuyishime P; Wang Y; Fan L; Zhang Q; Li Q; Zheng P; Sun J; Ma Y
    Metab Eng; 2018 Sep; 49():220-231. PubMed ID: 30048680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering Yeast
    Wang G; Olofsson-Dolk M; Hansson FG; Donati S; Li X; Chang H; Cheng J; Dahlin J; Borodina I
    ACS Synth Biol; 2021 Dec; 10(12):3537-3550. PubMed ID: 34797975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constructing a methanol-dependent Bacillus subtilis by engineering the methanol metabolism.
    Gao B; Zhao N; Deng J; Gu Y; Jia S; Hou Y; Lv X; Liu L
    J Biotechnol; 2022 Jan; 343():128-137. PubMed ID: 34906603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering and adaptive laboratory evolution of
    Sun Q; Liu D; Chen Z
    Front Bioeng Biotechnol; 2022; 10():1089639. PubMed ID: 36704306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing lysine level improved methanol assimilation toward butyric acid production in Butyribacterium methylotrophicum.
    Wang J; Liao Y; Qin J; Ma C; Jin Y; Wang X; Chen K; Ouyang P
    Biotechnol Biofuels Bioprod; 2023 Jan; 16(1):10. PubMed ID: 36650609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methanol-essential growth of Escherichia coli.
    Meyer F; Keller P; Hartl J; Gröninger OG; Kiefer P; Vorholt JA
    Nat Commun; 2018 Apr; 9(1):1508. PubMed ID: 29666370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase.
    Berríos-Rivera SJ; Bennett GN; San KY
    Metab Eng; 2002 Jul; 4(3):217-29. PubMed ID: 12616691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.