These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 30680038)

  • 1.
    Speck F; Rombach D; Wagenknecht HA
    Beilstein J Org Chem; 2019; 15():52-59. PubMed ID: 30680038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Naphthalene diimides with improved solubility for visible light photoredox catalysis.
    Reiß B; Wagenknecht HA
    Beilstein J Org Chem; 2019; 15():2043-2051. PubMed ID: 31501672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reductive Activation of Aryl Chlorides by Tuning the Radical Cation Properties of N-Phenylphenothiazines as Organophotoredox Catalysts.
    Weick F; Hagmeyer N; Giraud M; Dietzek-Ivanšić B; Wagenknecht HA
    Chemistry; 2023 Nov; 29(66):e202302347. PubMed ID: 37589486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Merging Visible Light Photoredox and Gold Catalysis.
    Hopkinson MN; Tlahuext-Aca A; Glorius F
    Acc Chem Res; 2016 Oct; 49(10):2261-2272. PubMed ID: 27610939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-Property Relationships for Tailoring Phenoxazines as Reducing Photoredox Catalysts.
    McCarthy BG; Pearson RM; Lim CH; Sartor SM; Damrauer NH; Miyake GM
    J Am Chem Soc; 2018 Apr; 140(15):5088-5101. PubMed ID: 29513533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoredox Catalytic α-Alkoxypentafluorosulfanylation of α-Methyl- and α-Phenylstyrene Using SF
    Rombach D; Wagenknecht HA
    Angew Chem Int Ed Engl; 2020 Jan; 59(1):300-303. PubMed ID: 31680388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visible Light Mediated Photoredox Catalytic Arylation Reactions.
    Ghosh I; Marzo L; Das A; Shaikh R; König B
    Acc Chem Res; 2016 Aug; 49(8):1566-77. PubMed ID: 27482835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp
    Kariofillis SK; Doyle AG
    Acc Chem Res; 2021 Feb; 54(4):988-1000. PubMed ID: 33511841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The direct anti-Markovnikov addition of mineral acids to styrenes.
    Wilger DJ; Grandjean JM; Lammert TR; Nicewicz DA
    Nat Chem; 2014 Aug; 6(8):720-6. PubMed ID: 25054943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of Oxygen α-Nucleophilic Addition to α,β-Unsaturated Amides Catalyzed by Redox-Neutral Organic Photoreductant.
    Luan ZH; Qu JP; Kang YB
    J Am Chem Soc; 2020 Dec; 142(50):20942-20947. PubMed ID: 33263989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substitution Effects on the Photophysical and Photoredox Properties of Tetraaza[7]helicenes.
    Rocker J; Dresel JA; Krieger LA; Eckhardt P; Ortuño AM; Kitzmann WR; Clever GH; Heinze K; Opatz T
    Chemistry; 2023 Aug; 29(48):e202301244. PubMed ID: 37222393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designing High-Triplet-Yield Phenothiazine Donor-Acceptor Complexes for Photoredox Catalysis.
    Sartor SM; Chrisman CH; Pearson RM; Miyake GM; Damrauer NH
    J Phys Chem A; 2020 Feb; 124(5):817-823. PubMed ID: 31918550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photocatalytic nucleophilic addition of alcohols to styrenes in Markovnikov and anti-Markovnikov orientation.
    Weiser M; Hermann S; Penner A; Wagenknecht HA
    Beilstein J Org Chem; 2015; 11():568-575. PubMed ID: 33613775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploiting Charge-Transfer States for Maximizing Intersystem Crossing Yields in Organic Photoredox Catalysts.
    Sartor SM; McCarthy BG; Pearson RM; Miyake GM; Damrauer NH
    J Am Chem Soc; 2018 Apr; 140(14):4778-4781. PubMed ID: 29595966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Triple Photoredox/Cobalt/Brønsted Acid Catalysis Enabling Markovnikov Hydroalkoxylation of Unactivated Alkenes.
    Nakagawa M; Matsuki Y; Nagao K; Ohmiya H
    J Am Chem Soc; 2022 May; 144(18):7953-7959. PubMed ID: 35476545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Merging Visible Light Photoredox Catalysis with Metal Catalyzed C-H Activations: On the Role of Oxygen and Superoxide Ions as Oxidants.
    Fabry DC; Rueping M
    Acc Chem Res; 2016 Sep; 49(9):1969-79. PubMed ID: 27556812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong Field Ligands.
    Chirik PJ
    Acc Chem Res; 2015 Jun; 48(6):1687-95. PubMed ID: 26042837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the Kinetics and Spectroscopy of Photoredox Catalysis and Transition-Metal-Free Alternatives.
    Pitre SP; McTiernan CD; Scaiano JC
    Acc Chem Res; 2016 Jun; 49(6):1320-30. PubMed ID: 27023767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoredox-Catalyzed Oxidation of Anions for the Atom-Economical Hydro-, Amido-, and Dialkylation of Alkenes.
    Forbes KC; Crooke AM; Lee Y; Kawada M; Shamskhou KM; Zhang RA; Cannon JS
    J Org Chem; 2022 Mar; 87(5):3498-3510. PubMed ID: 35133155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-Electron Transmetalation via Photoredox/Nickel Dual Catalysis: Unlocking a New Paradigm for sp(3)-sp(2) Cross-Coupling.
    Tellis JC; Kelly CB; Primer DN; Jouffroy M; Patel NR; Molander GA
    Acc Chem Res; 2016 Jul; 49(7):1429-39. PubMed ID: 27379472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.