BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 30680101)

  • 1. Responses of macroalgae to CO
    van der Loos LM; Schmid M; Leal PP; McGraw CM; Britton D; Revill AT; Virtue P; Nichols PD; Hurd CL
    Ecol Evol; 2019 Jan; 9(1):125-140. PubMed ID: 30680101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High prevalence of diffusive uptake of CO2 by macroalgae in a temperate subtidal ecosystem.
    Cornwall CE; Revill AT; Hurd CL
    Photosynth Res; 2015 May; 124(2):181-90. PubMed ID: 25739900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diverse inorganic carbon uptake strategies in Antarctic seaweeds: Revealing species-specific responses and implications for Ocean Acidification.
    Fernández PA; Amsler CD; Hurd CL; Díaz PA; Gaitán-Espitia JD; Macaya EC; Schmider-Martínez A; Garrido I; Murúa P; Buschmann AH
    Sci Total Environ; 2024 Jun; 945():174006. PubMed ID: 38889822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CARBON-USE STRATEGIES IN MACROALGAE: DIFFERENTIAL RESPONSES TO LOWERED PH AND IMPLICATIONS FOR OCEAN ACIDIFICATION(1).
    Cornwall CE; Hepburn CD; Pritchard D; Currie KI; McGraw CM; Hunter KA; Hurd CL
    J Phycol; 2012 Feb; 48(1):137-44. PubMed ID: 27009658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The acquisition of inorganic carbon by four red macroalgae.
    Johnston AM; Maberly SC; Raven JA
    Oecologia; 1992 Dec; 92(3):317-326. PubMed ID: 28312597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of irradiance and C-use strategies in tropical macroalgae photosynthetic response to ocean acidification.
    Zweng RC; Koch MS; Bowes G
    Sci Rep; 2018 Jun; 8(1):9479. PubMed ID: 29930306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate change and ocean acidification effects on seagrasses and marine macroalgae.
    Koch M; Bowes G; Ross C; Zhang XH
    Glob Chang Biol; 2013 Jan; 19(1):103-32. PubMed ID: 23504724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water motion and pH jointly impact the availability of dissolved inorganic carbon to macroalgae.
    James RK; Hepburn CD; Pritchard D; Richards DK; Hurd CL
    Sci Rep; 2022 Dec; 12(1):21947. PubMed ID: 36536020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strains of the Harmful Cyanobacterium Microcystis aeruginosa Differ in Gene Expression and Activity of Inorganic Carbon Uptake Systems at Elevated CO2 Levels.
    Sandrini G; Jakupovic D; Matthijs HC; Huisman J
    Appl Environ Microbiol; 2015 Nov; 81(22):7730-9. PubMed ID: 26319871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The CO2 concentrating mechanism and photosynthetic carbon assimilation in limiting CO2 : how Chlamydomonas works against the gradient.
    Wang Y; Stessman DJ; Spalding MH
    Plant J; 2015 May; 82(3):429-448. PubMed ID: 25765072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecological imperatives for aquatic CO2-concentrating mechanisms.
    Maberly SC; Gontero B
    J Exp Bot; 2017 Jun; 68(14):3797-3814. PubMed ID: 28645178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diverse CO
    Hennon GMM; Hernández Limón MD; Haley ST; Juhl AR; Dyhrman ST
    Front Microbiol; 2017; 8():2547. PubMed ID: 29312232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diversity of CO2-concentrating mechanisms and responses to CO2 concentration in marine and freshwater diatoms.
    Clement R; Jensen E; Prioretti L; Maberly SC; Gontero B
    J Exp Bot; 2017 Jun; 68(14):3925-3935. PubMed ID: 28369472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic and biochemical responses to different concentrations of CO
    Wu S; Gu W; Jia S; Wang L; Wang L; Liu X; Zhou L; Huang A; Wang G
    Biotechnol Biofuels; 2021 Dec; 14(1):235. PubMed ID: 34906223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inorganic carbon utilization of tropical calcifying macroalgae and the impacts of intensive mariculture-derived coastal acidification on the physiological performance of the rhodolith Sporolithon sp.
    Narvarte BCV; Nelson WA; Roleda MY
    Environ Pollut; 2020 Nov; 266(Pt 1):115344. PubMed ID: 32829170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature sensitivity of carbon concentrating mechanisms in the diatom Phaeodactylum tricornutum.
    Li M; Young JN
    Photosynth Res; 2023 May; 156(2):205-215. PubMed ID: 36881356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH determines the energetic efficiency of the cyanobacterial CO2 concentrating mechanism.
    Mangan NM; Flamholz A; Hood RD; Milo R; Savage DF
    Proc Natl Acad Sci U S A; 2016 Sep; 113(36):E5354-62. PubMed ID: 27551079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The carbon-concentrating mechanism of the extremophilic red microalga Cyanidioschyzon merolae.
    Steensma AK; Shachar-Hill Y; Walker BJ
    Photosynth Res; 2023 May; 156(2):247-264. PubMed ID: 36780115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trajectories for the evolution of bacterial CO
    Flamholz AI; Dugan E; Panich J; Desmarais JJ; Oltrogge LM; Fischer WW; Singer SW; Savage DF
    Proc Natl Acad Sci U S A; 2022 Dec; 119(49):e2210539119. PubMed ID: 36454757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ocean acidification alleviates low-temperature effects on growth and photosynthesis of the red alga Neosiphonia harveyi (Rhodophyta).
    Olischläger M; Wiencke C
    J Exp Bot; 2013 Dec; 64(18):5587-97. PubMed ID: 24127518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.