These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30680590)

  • 21. Low-cost biotransformation of glycerol to 1,3-dihydroxyacetone through Gluconobacter frateurii in medium with inorganic salts only.
    Poljungreed I; Boonyarattanakalin S
    Lett Appl Microbiol; 2018 Jul; 67(1):39-46. PubMed ID: 29574796
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improvement of 1,3-dihydroxyacetone production from Gluconobacter oxydans by ion beam implantation.
    Hu ZC; Liu ZQ; Xu JM; Zheng YG; Shen YC
    Prep Biochem Biotechnol; 2012; 42(1):15-28. PubMed ID: 22239705
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimization of submerged-culture conditions for mycelial growth and exo-biopolymer production by Auricularia polytricha (wood ears fungus) using the methods of uniform design and regression analysis.
    Xu CP; Yun JW
    Biotechnol Appl Biochem; 2003 Oct; 38(Pt 2):193-9. PubMed ID: 12793860
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coenzyme Q10 production in plants: current status and future prospects.
    Parmar SS; Jaiwal A; Dhankher OP; Jaiwal PK
    Crit Rev Biotechnol; 2015 Jun; 35(2):152-64. PubMed ID: 24090245
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling of process parameters for enhanced production of coenzyme Q10 from Rhodotorula glutinis.
    Balakumaran PA; Meenakshisundaram S
    Prep Biochem Biotechnol; 2015; 45(4):398-410. PubMed ID: 24842452
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of fibrolytic enzyme production by Aspergillus japonicus C03 with potential application in ruminant feed and their effects on tropical forages hydrolysis.
    Facchini FD; Vici AC; Benassi VM; Freitas LA; Reis RA; Jorge JA; Terenzi HF; Polizeli Mde L
    Bioprocess Biosyst Eng; 2011 Oct; 34(8):1027-38. PubMed ID: 21647681
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Production of coenzyme Q10 by metabolically engineered Escherichia coli].
    Dai G; Miao L; Sun T; Li Q; Xiao D; Zhang X
    Sheng Wu Gong Cheng Xue Bao; 2015 Feb; 31(2):206-19. PubMed ID: 26062342
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimization of submerged culture requirements for the production of mycelial growth and exopolysaccharide by Cordyceps jiangxiensis JXPJ 0109.
    Xiao JH; Chen DX; Liu JW; Liu ZL; Wan WH; Fang N; Xiao Y; Qi Y; Liang ZQ
    J Appl Microbiol; 2004; 96(5):1105-16. PubMed ID: 15078528
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomass production by a thermotolerant yeast: Hansenula polymorpha.
    Escalante J; Caminal G; de Mas C
    J Chem Technol Biotechnol; 1990; 48(1):61-70. PubMed ID: 1366408
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification and characterization of thermotolerant acetic acid bacteria strains isolated from coconut water vinegar in Sri Lanka.
    Perumpuli PA; Watanabe T; Toyama H
    Biosci Biotechnol Biochem; 2014; 78(3):533-41. PubMed ID: 25036846
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced production techniques, properties and uses of coenzyme Q10.
    de Dieu Ndikubwimana J; Lee BH
    Biotechnol Lett; 2014 Oct; 36(10):1917-26. PubMed ID: 25048223
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of medium composition and fermentation parameters on pullulan production by Aureobasidium pullulans.
    Cheng KC; Demirci A; Catchmark JM
    Food Sci Technol Int; 2011 Apr; 17(2):99-109. PubMed ID: 21421674
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synergic regulation of redox potential and oxygen uptake to enhance production of coenzyme Q
    Zhu Y; Ye L; Chen Z; Hu W; Shi Y; Chen J; Wang C; Li Y; Li W; Yu H
    Enzyme Microb Technol; 2017 Jun; 101():36-43. PubMed ID: 28433189
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sequential parametric optimization of lipase production by a mutant strain Rhizopus sp. BTNT-2.
    Bapiraju KV; Sujatha P; Ellaiah P; Ramana T
    J Basic Microbiol; 2005; 45(4):257-73. PubMed ID: 16028198
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimization of trehalose production by a novel strain Brevibacterium sp. SY361.
    Wang L; Huang R; Gu G; Fang H
    J Basic Microbiol; 2008 Oct; 48(5):410-5. PubMed ID: 18759225
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selection of thermotolerant Saccharomyces cerevisiae for high temperature ethanol production from molasses and increasing ethanol production by strain improvement.
    Pattanakittivorakul S; Lertwattanasakul N; Yamada M; Limtong S
    Antonie Van Leeuwenhoek; 2019 Jul; 112(7):975-990. PubMed ID: 30666530
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimization of culture conditions for production of the anti-tubercular alkaloid hirsutellone A by Trichoderma gelatinosum BCC 7579.
    Supothina S; Isaka M; Wongsa P
    Lett Appl Microbiol; 2007 May; 44(5):531-7. PubMed ID: 17451521
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimization of ectoine synthesis through fed-batch fermentation of Brevibacterium epidermis.
    Onraedt AE; Walcarius BA; Soetaert WK; Vandamme EJ
    Biotechnol Prog; 2005; 21(4):1206-12. PubMed ID: 16080703
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient production of coenzyme Q
    Wang Y; Chen S; Liu J; Lv P; Cai D; Zhao G
    RSC Adv; 2019 Jul; 9(39):22336-22342. PubMed ID: 35519485
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancement of antroquinonol production during batch fermentation using pH control coupled with an oxygen vector.
    Xia Y; Chen Y; Liu X; Zhou X; Wang Z; Wang G; Xiong Z; Ai L
    J Sci Food Agric; 2019 Jan; 99(1):449-456. PubMed ID: 29900550
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.