These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 30680640)

  • 21. The impact of verbal working memory on number-space associations.
    Ginsburg V; van Dijck JP; Previtali P; Fias W; Gevers W
    J Exp Psychol Learn Mem Cogn; 2014 Jul; 40(4):976-86. PubMed ID: 24707784
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modality independence of order coding in working memory: Evidence from cross-modal order interference at recall.
    Vandierendonck A
    Q J Exp Psychol (Hove); 2016; 69(1):161-79. PubMed ID: 25801664
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Consider the category: The effect of spacing depends on individual learning histories.
    Slone LK; Sandhofer CM
    J Exp Child Psychol; 2017 Jul; 159():34-49. PubMed ID: 28266333
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Working memory involvement in spatial text processing: what advantages are gained from extended learning and visuo-spatial strategies?
    Meneghetti C; De Beni R; Gyselinck V; Pazzaglia F
    Br J Psychol; 2011 Aug; 102(3):499-518. PubMed ID: 21752002
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Information processing in the cerebral hemispheres: selective hemispheric activation and capacity limitations.
    Hellige JB; Cox PJ; Litvac L
    J Exp Psychol Gen; 1979 Jun; 108(2):251-79. PubMed ID: 528905
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conflict resolved: On the role of spatial attention in reading and color naming tasks.
    Robidoux S; Besner D
    Psychon Bull Rev; 2015 Dec; 22(6):1709-16. PubMed ID: 25862427
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Repeated acquisition of a spatial navigation task in mice: effects of spacing of trials and of unilateral middle cerebral artery occlusion.
    Klapdor K; Van Der Staay FJ
    Physiol Behav; 1998 Mar; 63(5):903-9. PubMed ID: 9618015
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of spaced versus massed training in function learning.
    McDaniel MA; Fadler CL; Pashler H
    J Exp Psychol Learn Mem Cogn; 2013 Sep; 39(5):1417-32. PubMed ID: 23565787
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimizing song retention through the spacing effect.
    Katz JJ; Ando M; Wiseheart M
    Cogn Res Princ Implic; 2021 Dec; 6(1):79. PubMed ID: 34894323
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrophysiological correlates of word repetition spacing: ERP and induced band power old/new effects with massed and spaced repetitions.
    Van Strien JW; Verkoeijen PP; Van der Meer N; Franken IH
    Int J Psychophysiol; 2007 Dec; 66(3):205-14. PubMed ID: 17688964
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Planning sentences while doing other things at the same time: effects of concurrent verbal and visuospatial working memory load.
    Klaus J; Mädebach A; Oppermann F; Jescheniak JD
    Q J Exp Psychol (Hove); 2017 Apr; 70(4):811-831. PubMed ID: 26985697
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visuospatial working memory influences the interaction between space and time.
    Starr A; Brannon EM
    Psychon Bull Rev; 2016 Dec; 23(6):1839-1845. PubMed ID: 27118460
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of the spacing effect to improve learning and memory for functional tasks in traumatic brain injury: a pilot study.
    Goverover Y; Arango-Lasprilla JC; Hillary FG; Chiaravalloti N; Deluca J
    Am J Occup Ther; 2009; 63(5):543-8. PubMed ID: 19785253
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanisms underlying the spacing effect in learning: A comparison of three computational models.
    Walsh MM; Gluck KA; Gunzelmann G; Jastrzembski T; Krusmark M; Myung JI; Pitt MA; Zhou R
    J Exp Psychol Gen; 2018 Sep; 147(9):1325-1348. PubMed ID: 30148385
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Retrieval practice: a simple strategy for improving memory after traumatic brain injury.
    Sumowski JF; Wood HG; Chiaravalloti N; Wylie GR; Lengenfelder J; DeLuca J
    J Int Neuropsychol Soc; 2010 Nov; 16(6):1147-50. PubMed ID: 20946709
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reward Learning over Weeks Versus Minutes Increases the Neural Representation of Value in the Human Brain.
    Wimmer GE; Li JK; Gorgolewski KJ; Poldrack RA
    J Neurosci; 2018 Aug; 38(35):7649-7666. PubMed ID: 30061189
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Number-processing skills in adults with dyslexia.
    Gobel SM; Snowling MJ
    Q J Exp Psychol (Hove); 2010 Jul; 63(7):1361-73. PubMed ID: 19899014
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spacing of repetitions improves learning and memory after moderate and severe TBI.
    Hillary FG; Schultheis MT; Challis BH; Millis SR; Carnevale GJ; Galshi T; DeLuca J
    J Clin Exp Neuropsychol; 2003 Feb; 25(1):49-58. PubMed ID: 12607171
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A secondary task is not always costly: Context-based guidance of visual search survives interference from a demanding working memory task.
    Annac E; Zang X; Müller HJ; Geyer T
    Br J Psychol; 2019 May; 110(2):381-399. PubMed ID: 30260470
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dissociating visuo-spatial and verbal working memory: It's all in the features.
    Poirier M; Yearsley JM; Saint-Aubin J; Fortin C; Gallant G; Guitard D
    Mem Cognit; 2019 May; 47(4):603-618. PubMed ID: 30560471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.