BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

942 related articles for article (PubMed ID: 30680811)

  • 1. Self-Suppression of Lithium Dendrite in All-Solid-State Lithium Metal Batteries with Poly(vinylidene difluoride)-Based Solid Electrolytes.
    Zhang X; Wang S; Xue C; Xin C; Lin Y; Shen Y; Li L; Nan CW
    Adv Mater; 2019 Mar; 31(11):e1806082. PubMed ID: 30680811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organic-Organic Composite Electrolyte Enables Ultralong Cycle Life in Solid-State Lithium Metal Batteries.
    Xue C; Zhang X; Wang S; Li L; Nan CW
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):24837-24844. PubMed ID: 32383853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is It Possible to Obtain Solvent-Free, Li
    Callegari D; Bonizzoni S; Berbenni V; Quartarone E; Mustarelli P
    Adv Mater; 2020 Apr; 32(14):e1907375. PubMed ID: 32103557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lithium Nafion-Modified Li
    Walle KZ; Wu YS; Wu SH; Chang JK; Jose R; Yang CC
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15259-15274. PubMed ID: 35344344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uniform Lithium Plating for Dendrite-Free Lithium Metal Batteries: Role of Dipolar Channels in Poly(vinylidene fluoride) and PbZr
    Kang BH; Li SF; Yang J; Li ZM; Huang YF
    ACS Nano; 2023 Jul; 17(14):14114-14122. PubMed ID: 37405783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Molecular Weight on the Electrochemical Properties of Poly(vinylidene difluoride)-Based Polymer Electrolytes.
    Liang Y; Guan S; Xin C; Wen K; Xue C; Chen H; Liu S; Wu X; Yuan H; Li L; Nan CW
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):32075-32083. PubMed ID: 35786868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coconstruction of Supramolecular Lithium-Conducting Cross-Linked Networks Based on PVDF and Triblock Polymer Nanomicrosphere Solid-State Polymer Electrolytes for Lithium-Metal Batteries.
    Wu S; Wang C; Li S; Lin L; Tong Q; Zhu M; Weng J
    ACS Appl Mater Interfaces; 2024 Jun; 16(22):28482-28492. PubMed ID: 38771938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the structure and chemistry of the solid-electrolyte interface by cryo-EM leads to high-performance solid-state Li-metal batteries.
    Lin R; He Y; Wang C; Zou P; Hu E; Yang XQ; Xu K; Xin HL
    Nat Nanotechnol; 2022 Jul; 17(7):768-776. PubMed ID: 35773425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Coral-like LLZO/PVDF Composite Electrolytes with Enhanced Ionic Conductivity and Mechanical Flexibility for Solid-State Lithium Batteries.
    Wu M; Liu D; Qu D; Xie Z; Li J; Lei J; Tang H
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52652-52659. PubMed ID: 33170632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Li
    Li B; Su Q; Yu L; Wang D; Ding S; Zhang M; Du G; Xu B
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42206-42213. PubMed ID: 31625713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solid-State Electrolyte Design for Lithium Dendrite Suppression.
    Ji X; Hou S; Wang P; He X; Piao N; Chen J; Fan X; Wang C
    Adv Mater; 2020 Nov; 32(46):e2002741. PubMed ID: 33035375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-performance all-solid-state batteries enabled by salt bonding to perovskite in poly(ethylene oxide).
    Xu H; Chien PH; Shi J; Li Y; Wu N; Liu Y; Hu YY; Goodenough JB
    Proc Natl Acad Sci U S A; 2019 Sep; 116(38):18815-18821. PubMed ID: 31467166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quasi-Ionic Liquid Enabling Single-Phase Poly(vinylidene fluoride)-Based Polymer Electrolytes for Solid-State LiNi
    Xu F; Deng S; Guo Q; Zhou D; Yao X
    Small Methods; 2021 Jul; 5(7):e2100262. PubMed ID: 34927985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composite Lithium Protective Layer Formed In Situ for Stable Lithium Metal Batteries.
    Zhang Y; Sun C
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):12099-12105. PubMed ID: 33653027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eutectic-Based Polymer Electrolyte with the Enhanced Lithium Salt Dissociation for High-Performance Lithium Metal Batteries.
    Zhang D; Liu Y; Sun Z; Liu Z; Xu X; Xi L; Ji S; Zhu M; Liu J
    Angew Chem Int Ed Engl; 2023 Oct; 62(44):e202310006. PubMed ID: 37702354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Fiber-Network-Reinforced Bicontinuous Composite Solid Electrolyte for Dendrite-free Lithium Metal Batteries.
    Li D; Chen L; Wang T; Fan LZ
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):7069-7078. PubMed ID: 29411972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Double-Layered Multifunctional Composite Electrolytes for High-Voltage Solid-State Lithium-Metal Batteries.
    Yao Z; Zhu K; Li X; Zhang J; Li J; Wang J; Yan K; Liu J
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):11958-11967. PubMed ID: 33656866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibiting Residual Solvent Induced Side Reactions in Vinylidene Fluoride-Based Polymer Electrolytes Enables Ultra-Stable Solid-State Lithium Metal Batteries.
    Zhang D; Liu Y; Yang S; Zhu J; Hong H; Li S; Xiong Q; Huang Z; Wang S; Liu J; Zhi C
    Adv Mater; 2024 May; ():e2401549. PubMed ID: 38739735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacial Chemistry Enables Stable Cycling of All-Solid-State Li Metal Batteries at High Current Densities.
    Xu B; Li X; Yang C; Li Y; Grundish NS; Chien PH; Dong K; Manke I; Fang R; Wu N; Xu H; Dolocan A; Goodenough JB
    J Am Chem Soc; 2021 May; 143(17):6542-6550. PubMed ID: 33904722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetric Structure Design of Electrolytes with Flexibility and Lithium Dendrite-Suppression Ability for Solid-State Lithium Batteries.
    Guo HL; Sun H; Jiang ZL; Hu JY; Luo CS; Gao MY; Cheng JY; Shi WK; Zhou HJ; Sun SG
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46783-46791. PubMed ID: 31769644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 48.