These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 30681180)

  • 1. Erythrocyte ATP, a possible therapeutic approach for sickle cell disease.
    Hoffman JF
    Am J Hematol; 2019 May; 94(5):E117. PubMed ID: 30681180
    [No Abstract]   [Full Text] [Related]  

  • 2. Red cell membrane injury in sickle cell anaemia.
    Palek J
    Br J Haematol; 1977 Jan; 35(1):1-9. PubMed ID: 322695
    [No Abstract]   [Full Text] [Related]  

  • 3. A novel non-invasive method to measure splenic filtration function in humans.
    El Hoss S; Dussiot M; Renaud O; Brousse V; El Nemer W
    Haematologica; 2018 Oct; 103(10):e436-e439. PubMed ID: 29880604
    [No Abstract]   [Full Text] [Related]  

  • 4. Sickle cell vasoocclusion: heterotypic, multicellular aggregations driven by leukocyte adhesion.
    Frenette PS
    Microcirculation; 2004 Mar; 11(2):167-77. PubMed ID: 15280090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The proteomics and interactomics of human erythrocytes.
    Goodman SR; Daescu O; Kakhniashvili DG; Zivanic M
    Exp Biol Med (Maywood); 2013 May; 238(5):509-18. PubMed ID: 23856902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Singer K, Fisher B. Studies on abnormal hemoglobins, VI: electrophoretic demonstration of type S (sickle cell) hemoglobin in erythrocytes incapable of showing the sickle cell phenomenon. Blood. 1953;8(3):270-275.
    Blood; 2016 Feb; 127(7):791. PubMed ID: 26893392
    [No Abstract]   [Full Text] [Related]  

  • 7. Erythrocyte membrane sulfatide plays a crucial role in the adhesion of sickle erythrocytes to endothelium.
    Zhou Z; Thiagarajan P; Udden M; Lòpez JA; Guchhait P
    Thromb Haemost; 2011 Jun; 105(6):1046-52. PubMed ID: 21437360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sickle red cell dehydration: mechanisms and interventions.
    Bookchin RM; Lew VL
    Curr Opin Hematol; 2002 Mar; 9(2):107-10. PubMed ID: 11844992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Should we still be focused on red cell hemoglobin F as the principal explanation for the salutary effect of hydroxyurea in sickle cell disease?
    Segel GB; Simon W; Lichtman MA
    Pediatr Blood Cancer; 2011 Jul; 57(1):8-9. PubMed ID: 21480473
    [No Abstract]   [Full Text] [Related]  

  • 10. New insights provided by a comparison of impaired deformability with erythrocyte oxidative stress for sickle cell disease.
    Barodka VM; Nagababu E; Mohanty JG; Nyhan D; Berkowitz DE; Rifkind JM; Strouse JJ
    Blood Cells Mol Dis; 2014 Apr; 52(4):230-5. PubMed ID: 24246527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell adhesion under flow.
    Ley K
    Microcirculation; 2009 Jan; 16(1):1-2. PubMed ID: 19191171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathophysiology and treatment of sickle cell disease.
    Raphael RI
    Clin Adv Hematol Oncol; 2005 Jun; 3(6):492-505. PubMed ID: 16167028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperhemolysis syndrome in a patient with sickle cell disease with erythrophagocytosis in peripheral blood.
    Islam MS; Chia L
    Eur J Haematol; 2010 Feb; 84(2):188. PubMed ID: 19744126
    [No Abstract]   [Full Text] [Related]  

  • 14. Metabolomic and molecular insights into sickle cell disease and innovative therapies.
    Adebiyi MG; Manalo JM; Xia Y
    Blood Adv; 2019 Apr; 3(8):1347-1355. PubMed ID: 31015210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sickle cell disease: from membrane pathophysiology to novel therapies for prevention of erythrocyte dehydration.
    Brugnara C
    J Pediatr Hematol Oncol; 2003 Dec; 25(12):927-33. PubMed ID: 14663274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of hydroxyurea on F-cells in sickle cell disease and potential impact of a second fetal globin inducer.
    Dai Y; Sangerman J; Nouraie M; Faller AD; Oneal P; Rock A; Owoyemi O; Niu X; Nekhai S; Maharaj D; Cui S; Taylor R; Steinberg M; Perrine S
    Am J Hematol; 2017 Jan; 92(1):E10-E11. PubMed ID: 27766663
    [No Abstract]   [Full Text] [Related]  

  • 17. Non-uniformity of intracellular polymer formation in sickle erythrocytes: possible correlation with severity of hemolytic anemia.
    Noguchi CT; Schechter AN
    Am J Pediatr Hematol Oncol; 1984; 6(1):46-50. PubMed ID: 6711762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New insights into the pathophysiology and development of novel therapies for sickle cell disease.
    Moerdler S; Manwani D
    Hematology Am Soc Hematol Educ Program; 2018 Nov; 2018(1):493-506. PubMed ID: 30504350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of red cell energy metabolism in the generation of irreversibly sickled cells in vitro.
    Jensen M; Shohet SB; Nathan DG
    Blood; 1973 Dec; 42(6):835-42. PubMed ID: 4202454
    [No Abstract]   [Full Text] [Related]  

  • 20. Reversibility of splenic function by transfusion in two young adults with sickle cell anemia.
    Wethers DL; Grover R
    Am J Pediatr Hematol Oncol; 1987; 9(3):209-11. PubMed ID: 3674332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.