These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 30681226)
1. A streak length-based method for quantifying red blood cell flow in skeletal muscle arteriolar networks. Goldman D; Farid Z; Jackson DN Microcirculation; 2019 Jul; 26(5):e12532. PubMed ID: 30681226 [TBL] [Abstract][Full Text] [Related]
2. A simple "streak length method" for quantifying and characterizing red blood cell velocity profiles and blood flow in rat skeletal muscle arterioles. Al-Khazraji BK; Novielli NM; Goldman D; Medeiros PJ; Jackson DN Microcirculation; 2012 May; 19(4):327-35. PubMed ID: 22284025 [TBL] [Abstract][Full Text] [Related]
3. Estimating blood flow in skeletal muscle arteriolar trees reconstructed from in vivo data using the Fry approach. Farid Z; Saleem AH; Al-Khazraji BK; Jackson DN; Goldman D Microcirculation; 2017 Jul; 24(5):. PubMed ID: 28470885 [TBL] [Abstract][Full Text] [Related]
4. Capillary recruitment in response to tissue hypoxia and its dependence on red blood cell deformability. Parthasarathi K; Lipowsky HH Am J Physiol; 1999 Dec; 277(6):H2145-57. PubMed ID: 10600832 [TBL] [Abstract][Full Text] [Related]
5. Microvascular flow and tissue PO(2) in skeletal muscle of chronic reduced renal mass hypertensive rats. Lombard JH; Frisbee JC; Greene AS; Hudetz AG; Roman RJ; Tonellato PJ Am J Physiol Heart Circ Physiol; 2000 Nov; 279(5):H2295-302. PubMed ID: 11045965 [TBL] [Abstract][Full Text] [Related]
6. Comprehensive In Situ Analysis of Arteriolar Network Geometry and Topology in Rat Gluteus Maximus Muscle. Al Tarhuni M; Goldman D; Jackson DN Microcirculation; 2016 Aug; 23(6):456-67. PubMed ID: 27344034 [TBL] [Abstract][Full Text] [Related]
7. A Microvascular Wall Shear Rate Function Derived From In Vivo Hemodynamic and Geometric Parameters in Continuously Branching Arterioles. Al-Khazraji BK; Jackson DN; Goldman D Microcirculation; 2016 May; 23(4):311-9. PubMed ID: 27018869 [TBL] [Abstract][Full Text] [Related]
8. Symmetry recovery of cell-free layer after bifurcations of small arterioles in reduced flow conditions: effect of RBC aggregation. Ng YC; Namgung B; Tien SL; Leo HL; Kim S Am J Physiol Heart Circ Physiol; 2016 Aug; 311(2):H487-97. PubMed ID: 27233764 [TBL] [Abstract][Full Text] [Related]
9. Red blood cells stabilize flow in brain microvascular networks. Schmid F; Barrett MJP; Obrist D; Weber B; Jenny P PLoS Comput Biol; 2019 Aug; 15(8):e1007231. PubMed ID: 31469820 [TBL] [Abstract][Full Text] [Related]
10. A few upstream bifurcations drive the spatial distribution of red blood cells in model microfluidic networks. Merlo A; Berg M; Duru P; Risso F; Davit Y; Lorthois S Soft Matter; 2022 Feb; 18(7):1463-1478. PubMed ID: 35088062 [TBL] [Abstract][Full Text] [Related]
11. Low-affinity hemoglobin increases tissue PO2 and decreases arteriolar diameter and flow in the rat cremaster muscle. Kunert MP; Liard JF; Abraham DJ; Lombard JH Microvasc Res; 1996 Jul; 52(1):58-68. PubMed ID: 8812756 [TBL] [Abstract][Full Text] [Related]
12. Inflow/Outflow Boundary Conditions for Particle-Based Blood Flow Simulations: Application to Arterial Bifurcations and Trees. Lykov K; Li X; Lei H; Pivkin IV; Karniadakis GE PLoS Comput Biol; 2015 Aug; 11(8):e1004410. PubMed ID: 26317829 [TBL] [Abstract][Full Text] [Related]
13. Temporal profile of rat skeletal muscle capillary haemodynamics during recovery from contractions. Ferreira LF; Padilla DJ; Musch TI; Poole DC J Physiol; 2006 Jun; 573(Pt 3):787-97. PubMed ID: 16581868 [TBL] [Abstract][Full Text] [Related]
14. Capillary module haemodynamics and mechanisms of blood flow regulation in skeletal muscle capillary networks: Experimental and computational analysis. Mendelson AA; Ho E; Scott S; Vijay R; Hunter T; Milkovich S; Ellis CG; Goldman D J Physiol; 2022 Apr; 600(8):1867-1888. PubMed ID: 35067970 [TBL] [Abstract][Full Text] [Related]
15. Skeletal muscle capillary hemodynamics from rest to contractions: implications for oxygen transfer. Kindig CA; Richardson TE; Poole DC J Appl Physiol (1985); 2002 Jun; 92(6):2513-20. PubMed ID: 12015367 [TBL] [Abstract][Full Text] [Related]
16. A constrained constructive optimization model of branching arteriolar networks in rat skeletal muscle. Bao Y; Frisbee AC; Frisbee JC; Goldman D J Appl Physiol (1985); 2024 Jun; 136(6):1303-1321. PubMed ID: 38601995 [TBL] [Abstract][Full Text] [Related]
17. Local vs. Global Blood Flow Modulation in Artificial Microvascular Networks: Effects on Red Blood Cell Distribution and Partitioning. Mantegazza A; Ungari M; Clavica F; Obrist D Front Physiol; 2020; 11():566273. PubMed ID: 33123027 [TBL] [Abstract][Full Text] [Related]
18. Red blood cell aggregation and microcirculation in rat cremaster muscle. Vicaut E; Hou X; Decuypère L; Taccoen A; Duvelleroy M Int J Microcirc Clin Exp; 1994; 14(1-2):14-21. PubMed ID: 7525499 [TBL] [Abstract][Full Text] [Related]
20. A new video image analysis system to study red blood cell dynamics and oxygenation in capillary networks. Japee SA; Pittman RN; Ellis CG Microcirculation; 2005 Sep; 12(6):489-506. PubMed ID: 16147466 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]