BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 30681833)

  • 1. Redirecting Metabolic Flux via Combinatorial Multiplex CRISPRi-Mediated Repression for Isopentenol Production in Escherichia coli.
    Tian T; Kang JW; Kang A; Lee TS
    ACS Synth Biol; 2019 Feb; 8(2):391-402. PubMed ID: 30681833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR interference-guided multiplex repression of endogenous competing pathway genes for redirecting metabolic flux in Escherichia coli.
    Kim SK; Seong W; Han GH; Lee DH; Lee SG
    Microb Cell Fact; 2017 Nov; 16(1):188. PubMed ID: 29100516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted Transcriptional Repression in Bacteria Using CRISPR Interference (CRISPRi).
    Hawkins JS; Wong S; Peters JM; Almeida R; Qi LS
    Methods Mol Biol; 2015; 1311():349-62. PubMed ID: 25981485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applications of CRISPR/Cas System to Bacterial Metabolic Engineering.
    Cho S; Shin J; Cho BK
    Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29621180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production.
    Kim SK; Han GH; Seong W; Kim H; Kim SW; Lee DH; Lee SG
    Metab Eng; 2016 Nov; 38():228-240. PubMed ID: 27569599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPathBrick: Modular Combinatorial Assembly of Type II-A CRISPR Arrays for dCas9-Mediated Multiplex Transcriptional Repression in E. coli.
    Cress BF; Toparlak ÖD; Guleria S; Lebovich M; Stieglitz JT; Englaender JA; Jones JA; Linhardt RJ; Koffas MA
    ACS Synth Biol; 2015 Sep; 4(9):987-1000. PubMed ID: 25822415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corynebacterium glutamicum Metabolic Engineering with CRISPR Interference (CRISPRi).
    Cleto S; Jensen JV; Wendisch VF; Lu TK
    ACS Synth Biol; 2016 May; 5(5):375-85. PubMed ID: 26829286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic manipulation through CRISPRi and gene deletion to enhance cadaverine production in Escherichia coli.
    Ting WW; Ng IS
    J Biosci Bioeng; 2020 Dec; 130(6):553-562. PubMed ID: 32792329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/dCas9-Mediated Gene Silencing in Two Plant Fungal Pathogens.
    Zhang YM; Zheng L; Xie K
    mSphere; 2023 Feb; 8(1):e0059422. PubMed ID: 36655998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining CRISPR and CRISPRi Systems for Metabolic Engineering of E. coli and 1,4-BDO Biosynthesis.
    Wu MY; Sung LY; Li H; Huang CH; Hu YC
    ACS Synth Biol; 2017 Dec; 6(12):2350-2361. PubMed ID: 28854333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPRi-mediated tunable control of gene expression level with engineered single-guide RNA in Escherichia coli.
    Byun G; Yang J; Seo SW
    Nucleic Acids Res; 2023 May; 51(9):4650-4659. PubMed ID: 36999618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPRi/dCpf1-mediated dynamic metabolic switch to enhance butenoic acid production in Escherichia coli.
    Ji X; Zhao H; Zhu H; Zhu K; Tang SY; Lou C
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5385-5393. PubMed ID: 32338294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Transcriptional Gene Repression by Type V-A CRISPR-Cpf1 from Eubacterium eligens.
    Kim SK; Kim H; Ahn WC; Park KH; Woo EJ; Lee DH; Lee SG
    ACS Synth Biol; 2017 Jul; 6(7):1273-1282. PubMed ID: 28375596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene repression via multiplex gRNA strategy in Y. lipolytica.
    Zhang JL; Peng YZ; Liu D; Liu H; Cao YX; Li BZ; Li C; Yuan YJ
    Microb Cell Fact; 2018 Apr; 17(1):62. PubMed ID: 29678175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR interference (CRISPRi) for gene regulation and succinate production in cyanobacterium S. elongatus PCC 7942.
    Huang CH; Shen CR; Li H; Sung LY; Wu MY; Hu YC
    Microb Cell Fact; 2016 Nov; 15(1):196. PubMed ID: 27846887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing isoprenol production by systematically tuning metabolic pathways using CRISPR interference in
    Kim J; Lee TS
    Front Bioeng Biotechnol; 2023; 11():1296132. PubMed ID: 38026852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/dCas9-Mediated Multiplex Gene Repression in Streptomyces.
    Zhao Y; Li L; Zheng G; Jiang W; Deng Z; Wang Z; Lu Y
    Biotechnol J; 2018 Sep; 13(9):e1800121. PubMed ID: 29862648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Easy regulation of metabolic flux in Escherichia coli using an endogenous type I-E CRISPR-Cas system.
    Chang Y; Su T; Qi Q; Liang Q
    Microb Cell Fact; 2016 Nov; 15(1):195. PubMed ID: 27842593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR interference as a titratable, trans-acting regulatory tool for metabolic engineering in the cyanobacterium Synechococcus sp. strain PCC 7002.
    Gordon GC; Korosh TC; Cameron JC; Markley AL; Begemann MB; Pfleger BF
    Metab Eng; 2016 Nov; 38():170-179. PubMed ID: 27481676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible Gene Expression Control in Yersinia pestis by Using an Optimized CRISPR Interference System.
    Wang T; Wang M; Zhang Q; Cao S; Li X; Qi Z; Tan Y; You Y; Bi Y; Song Y; Yang R; Du Z
    Appl Environ Microbiol; 2019 Jun; 85(12):. PubMed ID: 30979834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.