BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 30682850)

  • 1. NP-Scout: Machine Learning Approach for the Quantification and Visualization of the Natural Product-Likeness of Small Molecules.
    Chen Y; Stork C; Hirte S; Kirchmair J
    Biomolecules; 2019 Jan; 9(2):. PubMed ID: 30682850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hit Dexter 2.0: Machine-Learning Models for the Prediction of Frequent Hitters.
    Stork C; Chen Y; Šícho M; Kirchmair J
    J Chem Inf Model; 2019 Mar; 59(3):1030-1043. PubMed ID: 30624935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictive classifier models built from natural products with antimalarial bioactivity using machine learning approach.
    Egieyeh S; Syce J; Malan SF; Christoffels A
    PLoS One; 2018; 13(9):e0204644. PubMed ID: 30265702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural product-likeness score and its application for prioritization of compound libraries.
    Ertl P; Roggo S; Schuffenhauer A
    J Chem Inf Model; 2008 Jan; 48(1):68-74. PubMed ID: 18034468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural product-likeness score revisited: an open-source, open-data implementation.
    Jayaseelan KV; Moreno P; Truszkowski A; Ertl P; Steinbeck C
    BMC Bioinformatics; 2012 May; 13():106. PubMed ID: 22607271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. STarFish: A Stacked Ensemble Target Fishing Approach and its Application to Natural Products.
    Cockroft NT; Cheng X; Fuchs JR
    J Chem Inf Model; 2019 Nov; 59(11):4906-4920. PubMed ID: 31589422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal bone radiology report classification using open source machine learning and natural langue processing libraries.
    Masino AJ; Grundmeier RW; Pennington JW; Germiller JA; Crenshaw EB
    BMC Med Inform Decis Mak; 2016 Jun; 16():65. PubMed ID: 27267768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational models for the classification of mPGES-1 inhibitors with fingerprint descriptors.
    Xia Z; Yan A
    Mol Divers; 2017 Aug; 21(3):661-675. PubMed ID: 28484935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HDAC3i-Finder: A Machine Learning-based Computational Tool to Screen for HDAC3 Inhibitors.
    Li S; Ding Y; Chen M; Chen Y; Kirchmair J; Zhu Z; Wu S; Xia J
    Mol Inform; 2021 Mar; 40(3):e2000105. PubMed ID: 33067876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of a 3D-shaped, natural product like fragment library by fragmentation and diversification of natural products.
    Prescher H; Koch G; Schuhmann T; Ertl P; Bussenault A; Glick M; Dix I; Petersen F; Lizos DE
    Bioorg Med Chem; 2017 Feb; 25(3):921-925. PubMed ID: 28011199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hit Dexter: A Machine-Learning Model for the Prediction of Frequent Hitters.
    Stork C; Wagner J; Friedrich NO; de Bruyn Kops C; Šícho M; Kirchmair J
    ChemMedChem; 2018 Mar; 13(6):564-571. PubMed ID: 29285887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing Multiple Machine Learning Algorithms and Metrics for Estrogen Receptor Binding Prediction.
    Russo DP; Zorn KM; Clark AM; Zhu H; Ekins S
    Mol Pharm; 2018 Oct; 15(10):4361-4370. PubMed ID: 30114914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple machine learning based descriptive and predictive workflow for the identification of potential PTP1B inhibitors.
    Chandra S; Pandey J; Tamrakar AK; Siddiqi MI
    J Mol Graph Model; 2017 Jan; 71():242-256. PubMed ID: 28006676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assigning the Origin of Microbial Natural Products by Chemical Space Map and Machine Learning.
    Capecchi A; Reymond JL
    Biomolecules; 2020 Sep; 10(10):. PubMed ID: 32998475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural products as lead structures: chemical transformations to create lead-like libraries.
    Pascolutti M; Quinn RJ
    Drug Discov Today; 2014 Mar; 19(3):215-21. PubMed ID: 24171951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The potential role of in silico approaches to identify novel bioactive molecules from natural resources.
    Olğaç A; Orhan IE; Banoglu E
    Future Med Chem; 2017 Sep; 9(14):1665-1686. PubMed ID: 28841048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the Chemical Space of Known and Readily Obtainable Natural Products.
    Chen Y; Garcia de Lomana M; Friedrich NO; Kirchmair J
    J Chem Inf Model; 2018 Aug; 58(8):1518-1532. PubMed ID: 30010333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FOG: Fragment Optimized Growth algorithm for the de novo generation of molecules occupying druglike chemical space.
    Kutchukian PS; Lou D; Shakhnovich EI
    J Chem Inf Model; 2009 Jul; 49(7):1630-42. PubMed ID: 19527020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FAME 3: Predicting the Sites of Metabolism in Synthetic Compounds and Natural Products for Phase 1 and Phase 2 Metabolic Enzymes.
    Šícho M; Stork C; Mazzolari A; de Bruyn Kops C; Pedretti A; Testa B; Vistoli G; Svozil D; Kirchmair J
    J Chem Inf Model; 2019 Aug; 59(8):3400-3412. PubMed ID: 31361490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Building blocks for automated elucidation of metabolites: natural product-likeness for candidate ranking.
    Jayaseelan KV; Steinbeck C
    BMC Bioinformatics; 2014 Jul; 15():234. PubMed ID: 24996690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.